
数据降维、特征提取和特征选择的联系和区别
特征选择是指从n个特征中选择d(d<n)个出来,而其他的n-d个舍弃。特性选择有很多种方法,但是大多可以分为三类:①过滤:列入一些筛选特征的标准,如相关性/卡方分布。③嵌入:嵌入法使用内置了特征选择方法的算法。结论:特征提取(feature extraction)和特征选择(feature selection)两者的目标都是使得特征维度减少,但是方法不一样。是将原始高维特征空间里的点向低维空间映射,新的空间维度低于原始空间,所以维度减少。在这个过程中,特征发生了根本性改变,原来的特征消失了。




