并查集是一种树形数据结构,一般用来处理一些不相交集合的合并和查询。一般有如下操作:
初始化:
将集合中的所有点初始化为自身,表示该点为一个单独的集合。
void Make_Set(int x)
{//初始化
for(int i=1;i<=x;i++)
{
father[i]=i;
rank[i]=0;
}
}
查找:
查找两个点是否在同一个集合中。
非递归:
int Find_Set(int x)
{//查找
while(father[x]!=x)
{
x=father[x];
}
return x;
}
优化(压缩路径):
定义一个保存路径的save数组.
int Find_Set(int x)
{//查找
int cnt=0;
int save[MAXN];
while(father[x]!=x)
{
save[cnt ++]=a;
x=father[x];
}
for(int i=0;i<cnt;i++)
{
father[save[i]]=x;
}
return x;
}
递归写法:
int Find_Set(int x)
{//查找
if(father[x]!=x)
{
father[x]=Find_set(father[x]);
}
return father[x];
}
合并:
将两个不相交的集合合并为一个集合。
void Union(int x,int y)
{//合并
x=Find_Set(x);
y=Find_Set(y);
if(x==y) return;
father[x]=y;
}
优化:
用rank数组保存树的高度,把矮树并到高的树上。
#include <iostream>
using namespace std;
const int MAXN=1000+50;
int father[MAXN];
int sign[MAXN];
int rank[MAXN];
int cnt[MAXN];//保存不同集合的根节点
void Make_Set(int x)
{//初始化
for(int i=1;i<=x;i++)
{
father[i]=i;
rank[i]=0;
}
}
int Find_Set(int x)
{//查找
int i=0;
while(father[x]!=x)
{
sign[i++]=x;
x=father[x];
}
for(;i>0;i--)
{
father[sign[i-1]]=x;
}
return x;
}
void Union(int x,int y)
{//合并
x=Find_Set(x);
y=Find_Set(y);
if(x==y) return;
if(rank[x]>rank[y])
{
father[y]=x;
}
else if(rank[x]==rank[y])
{
father[x]=y;
rank[y]++;
}
else
{
father[x]=y;
}
}
int Cnt_Set(int x)
{//统计不同的集合数
int k=1;
cnt[k++]=Find_Set(1);
for(int i=2;i<=x;i++)
{
int flag=0;
int z=Find_Set(i);
for(int j=1;j<k;j++)
{
if(z==cnt[j])
{
flag=1;
break;
}
}
if(!flag)
{
cnt[k++]=z;
}
}
return k-1;
}
int main()
{
int n,m;
while(cin>>n>>m)
{
if(!n)
break;
Make_Set(n);
while(m--)
{
int x,y;
cin>>x>>y;
Union(x,y);
}
cout<<Cnt_Set(n)-1<<endl;
}
return 0;
}