全排列算法原理和其递归实现

 全排列是将一组数按一定顺序进行排列,如果这组数有n个,那么全排列数为n!个。现以{1, 2, 3, 4, 5}为
例说明如何编写全排列的递归算法。


1、首先看最后两个数4, 5。 它们的全排列为4 5和5 4, 即以4开头的5的全排列和以5开头的4的全排列。
由于一个数的全排列就是其本身,从而得到以上结果。
2、再看后三个数3, 4, 5。它们的全排列为3 4 5、3 5 4、 4 3 5、 4 5 3、 5 3 4、 5 4 3 六组数。
即以3开头的和4,5的全排列的组合、以4开头的和3,5的全排列的组合和以5开头的和3,4的全排列的组合.
从而可以推断,设一组数p = {r1, r2, r3, ... ,rn}, 全排列为perm(p),pn = p - {rn}。
因此perm(p) = r1perm(p1), r2perm(p2), r3perm(p3), ... , rnperm(pn)。当n = 1时perm(p} = r1。
为了更容易理解,将整组数中的所有的数分别与第一个数交换,这样就总是在处理后n-1个数的全排列。

算法如下:

#include <stdio.h>


void Swap(char* a, char* b)
{// 交换a和b
    char temp = *a;
    *a = *b;
    *b = temp;
}


void Perm(char list[], int k, int m)
{ //生成list [k:m ]的所有排列方式
    int i;
    if (k == m) {//输出一个排列方式
        for (i = 0; i <= m; i++)
            putchar(list[i]);
        putchar('\n');
    }
    else // list[k:m ]有多个排列方式
        // 递归地产生这些排列方式
        for (i=k; i <= m; i++) {
            Swap (&list[k], &list[i]);
            Perm (list, k+1, m);
            Swap (&list [k], &list [i]);
        }
}


int main()
{
    char s[]="12345";
    Perm(s, 0, 4);
    return 0;
}


本文参考: http://www.cnblogs.com/nokiaguy/archive/2008/05/11/1191914.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值