记一次Spark cache table导致的数据问题以及思考

目前在做 Spark 升级(3.1.1升级到3.5.0)的时候,遇到了cache table导致的数据重复问题,这种情况一般来说是很少见的,因为一般很少用cache table语句。
当然该问题已经在Spark3.5.1已经解决了,可以查看对应的 SPARK-46995SPARK-45592
从以上的分析知道:是在做join的一方(包含了AQEshuffleRead-coalesced) 影响了join的另一方,导致EnsureRequirements规则在做执行前检查的时候,会把join的另一个方的shuffle 数据调整为 包含了AQEshuffleRead-coalesced)的一方:

                      Scan
                       |
                   Shuffle(200)
                       |
  Scan           AQEShuffleRead(10)
   |                   |
Shuffle(10)   InMemoryTableScanExec
    \            /
         Join    

这会导致shuffle后的数据进行了错位(因为之前是shuffle(200),现在变成了shuffle(10)),具体原因笔者还是没有分析清楚,但是其中涉及到的点跟规则EnsureRequirements 以及 CoalesceShufflePartitions 有关,
EnsureRequirements 会做一些执行前的判断,主要是做任务shuffle的协调,
CoalesceShufflePartitions 中 collectCoalesceGroups 会收集 QueryStageExec ,如果是 join 的话,则会join的子节点会收集到一个组里去,这样就能看到 join中会有 AQEShuffleRead coalesced 成对出现

针对 Delta Table,有以下几种优化方式: 1. 压缩:Delta Table 支持多种压缩格式,包括 Snappy、Gzip、LZO 等。使用压缩格式可以减少磁盘空间占用和网络传输消耗,从而提高性能。 2. 合并操作:Delta Table 支持合并操作,可以将多个小文件合并成一个大文件,减少文件数量,提高查询性能。可以通过设定合并大小(`maxBytesPerTrigger`)和合并间隔时间(`triggerInterval`)来控制合并策略。 3. 分区优化:Delta Table 支持对数据进行分区,可以根据查询条件进行分区裁剪,提高查询性能。可以通过设定分区字段(`partitionBy`)来进行分区优化。 4. 缓存数据:Delta Table 支持将数据缓存到内存或磁盘中,可以加速后续的查询操作。可以使用 `cache()` 或 `persist()` 函数来进行数据缓存。 具体优化参数如下: 1. `maxBytesPerTrigger`:控制合并操作的文件大小,默认为 `128 MB`。 2. `triggerInterval`:控制合并操作的时间间隔,默认为 `1 minute`。 3. `partitionBy`:指定分区字段,用于分区优化。 4. `cache()` 或 `persist()`:用于缓存数据。 下面是一个具体的示例: ```python from pyspark.sql.functions import * from delta.tables import * # 创建 Delta Table deltaTable = DeltaTable.forPath(spark, "/path/to/delta") # 读取数据 streamingDF = spark.readStream.format("delta").load("/path/to/streaming") # 对数据进行处理 processedDF = streamingDF.groupBy("key").agg(sum("value").alias("total")) # 将数据写入 Delta Table processedDF.writeStream.format("delta") \ .option("checkpointLocation", "/path/to/checkpoint") \ .option("mergeSchema", "true") \ .option("maxBytesPerTrigger", "256 MB") \ .option("triggerInterval", "5 minutes") \ .partitionBy("key") \ .outputMode("update") \ .foreachBatch(lambda batchDF, batchId: deltaTable.alias("oldData") .merge(batchDF.alias("newData"), "oldData.key = newData.key") .whenMatchedUpdate(set={"total": col("newData.total")}) .whenNotMatchedInsert(values={"key": col("newData.key"), "total": col("newData.total")}) .execute()) \ .start() ``` 上述示例中,我们将流式数据进行了聚合操作,并将结果写入 Delta Table。在写入过程中,我们指定了一些优化参数,如合并大小和时间间隔、分区字段等,以提高性能。同时,我们还使用了 Delta Table 的 `merge` 操作,将新数据合并到旧数据中,实现了增量更新的功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值