质数的后代

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/moonlighttlj/article/details/55100639

                                        算法提高 质数的后代


                                                                                         时间限制: 1 Sec  内存限制: 256 MB


题目描述


在上一季里,曾提到过质数的孤独,其实从另一个角度看,无情隔膜它们的合数全是质数的后代,因为合数可以由质数相乘结合而得。
如果一个合数由两个质数相乘而得,那么我们就叫它是质数们的直接后代。现在,给你一系列自然数,判断它们是否是质数的直接后代。


输入


第一行一个正整数T,表示需要判断的自然数数量
接下来T行,每行一个要判断的自然数


输出


共T行,依次对于输入中给出的自然数,判断是否为质数的直接后代,是则输出Yes,否则输出No


样例输入


4
3
4
6
12

样例输出


No
Yes
Yes
No

提示


数据规模和约定



1<=T<=20

2<=要判断的自然数<=105

来源


#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
int prime(int n)
{
    int i;
    if(n==0||n==1)
        return -1;
    if(n==2||n==3)
        return 1;
    for(i=2;i<=sqrt(n);i++)
        if(n%i==0)
            break;
    if(i>sqrt(n))
        return 1;
    return -1;
}
int main()
{
    int n,i,a,j,b,flag=0;
    cin>>n;
    for(i=1;i<=n;i++)
    {
        cin>>a;flag=0;
        if(prime(a)==-1)
        {
           for(j=2;j<a;j++)
           {
               b=a/j;
               if(prime(j)==1&&prime(b)==1&&b*j==a)
               {
                   flag=1;
                   break;
               }
           }
        }
        if(flag==0)
            cout<<"No"<<endl;
        else
            cout<<"Yes"<<endl;
    }
    return 0;
}


阅读更多
博主设置当前文章不允许评论。
换一批

没有更多推荐了,返回首页