论文笔记:RAG综述
引言背景与挑战:大语言模型(LLMs)在特定任务中存在局限性,如产生幻觉、知识过时等,Retrieval - Augmented Generation(RAG)通过从外部数据库引入知识来增强LLMs,以解决这些问题。研究现状:RAG技术发展迅速,但缺乏系统的综合分析,本文旨在填补这一空白,对RAG的范式、核心技术、下游任务、评估方法以及未来挑战和发展方向进行全面综述。RAG概述典型应用:以ChatGPT回答关于近期新闻的问题为例,说明RAG通过从外部数据库获取相关知识并结合原问题生成回答的过程。






