AC自动机——Aho-Corasick Automaton

这是一个英文版的讲的比较好的AC自动机资料。

http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf

如果不爱看英文,可以看我整理的大致的翻译,再加上点解释说明啥的,建议中英两个版本结合着看,毕竟我翻译的里面可能有些错误。

http://download.csdn.net/download/morgan_xww/4476863


可以预览一下文档中的截图:

我的模板:

class ACAutomaton
{
public:
    static const int MAX_N = 10000 * 50 + 5;
        //最大结点数:模式串个数 X 模式串最大长度
    static const int CLD_NUM = 26;
        //从每个结点出发的最多边数,字符集Σ的大小,一般是26个字母

    int n;                          //trie树当前结点总数
    int id['z'+1];                  //字母x对应的结点编号为id[x]
    int fail[MAX_N];                //fail指针
    int tag[MAX_N];                 //根据题目而不同
    int trie[MAX_N][CLD_NUM];       //trie树,也就是goto函数

    void init()
    {
        for (int i = 0; i < CLD_NUM; i++)
            id['a'+i] = i;
    }

    void reset()
    {
        memset(trie[0], -1, sizeof(trie[0]));
        tag[0] = 0;
        n = 1;
    }

    //插入模式串s,构造单词树(keyword tree)
    void add(char *s)
    {
        int p = 0;
        while (*s)
        {
            int i = id[*s];
            if ( -1 == trie[p][i] )
            {
                memset(trie[n], -1, sizeof(trie[n]));
                tag[n] = 0;
                trie[p][i] = n++;
            }
            p = trie[p][i];
            s++;
        }
        tag[p]++;         //因题而异
    }

    //构造AC自动机,用BFS来计算每个结点的fail指针,就是构造trie图
    void construct()
    {
        queue<int> Q;
        fail[0] = 0;
        for (int i = 0; i < CLD_NUM; i++)
        {
            if (-1 != trie[0][i])
            {
                fail[trie[0][i]] = 0; //root下的第一层结点的fail指针都指向root
                Q.push(trie[0][i]);
            }
            else
            {
                trie[0][i] = 0;    //这是阶段一中的第2步
            }
        }
        while ( !Q.empty() )
        {
            int u = Q.front();
            Q.pop();
            for (int i = 0; i < CLD_NUM; i++)
            {
                int &v = trie[u][i];
                if ( -1 != v )
                {
                    Q.push(v);
                    fail[v] = trie[fail[u]][i];
                    tag[u] += tag[fail[u]];     //因题而异,某些题目中不需要这句话
                }
                else
                {            //当trie[u][i]==-1时,设置其为trie[fail[u]][i],就构造了trie图
                    v = trie[fail[u]][i];
                }
            }
        }
    }

    //因题而异
    //在目标串t中匹配模式串
    int solve(char *t)
    {
        int q = 0, ret = 0;
        while ( *t )
        {
            q = trie[q][id[*t]];
            int u = q;
            while ( u != 0 )
            {
                ret += tag[u];
                tag[u] = 0;
                u = fail[u];
            }
            t++;
        }
        return ret;
    }
} ac;


展开阅读全文

没有更多推荐了,返回首页