ECCV 2020 论文大盘点-语义分割篇

本文汇总了ECCV 2020会议上43篇语义分割相关论文,包括Oral 2篇,Spotlight 4篇。论文涉及缺陷检测、弱监督学习、半监督学习、少样本学习、3D语义分割、跨域适应等多个方向。文章介绍了各篇论文的主要贡献和创新点,如利用语义分割进行图像合成和比较进行缺陷检测,以及通过挖掘跨图像语义信息实现弱监督学习等。
摘要由CSDN通过智能技术生成

最近我们在总结ECCV 2020 的论文,分割类论文总计 93 篇,语义分割几乎占据半壁江山。本文包含 43 篇语义分割(Semantic Segmentation)相关论文

,其中 oral 2 篇,spotlight 4 篇。其中一半的论文开源或将开源。

下载包含这些论文的 ECCV 2020 所有论文:

ECCV 2020 论文合集下载,分类盘点进行中

语义分割

Synthesize then Compare: Detecting Failures and Anomalies for Semantic Segmentation

作者 | Yingda Xia, Yi Zhang, Fengze Liu, Wei Shen, Alan Yuille

单位 | 约翰斯霍普金斯大学

论文 | https://arxiv.org/abs/2003.08440

备注 | ECCV2020 Oral

这是一篇非常有启发意义的文章,将语义分割与图像合成用于缺陷检测和异常检测。在这两个问题重往往难以找到大量的真实数据集。用正常图像作为训练样本训练得到的语义分割模型。

作者认为将一幅图像先经过语义分割,然后用分割图重建原图,如果得到的重建图和原图差异不大,则不存在缺陷和异常,反之则存在明显的问题。

作者为此任务设计了含语义分割模块、图像合成模块、比较模块的系统,实验证明在几个主流数据集上都取得了最好的效果。

   弱监督语义分割

Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation

作者 | Guolei Sun, Wenguan Wang, Jifeng Dai, Luc Van Gool

单位 | 苏黎世联邦理工学院;商汤;上海交通大学

论文 | https://arxiv.org/abs/2007.01947

代码 | https://github.com/GuoleiSun/MCIS_wsss

备注 | ECCV2020 Oral;CVPR2020 LID研讨会最佳论文;LID挑战赛Track1获奖者

语义分割任务的标注往往需要大量的人力成本,该文挖掘跨图像的语义信息,用于减少标注,实现弱监督的语义分割。

Splitting vs. Merging: Mining Object Regions with Discrepancy and Interp Loss for Weakly Supervised Semantic Segmentation

作者 | Tianyi Zhang, Guosheng Lin, Weide Liu, Jianfei Cai, Alex Kot

单位 | 南洋理工大学;A*star;蒙纳士大学

论文 | https://www.ecva.net/papers/eccv_2020/

papers_ECCV/papers/123670664.pdf

备注 | ECCV 2020

Weakly Supervised Semantic Segmentation with Boundary Exploration

作者 | Liyi Chen, Weiwei Wu, Chenchen Fu, Xiao Han, Yuntao Zhang

单位 | 东南大学

论文 | https://www.ecva.net/papers/eccv_2020/

papers_ECCV/papers/123710341.pdf

备注 | ECCV 2020

   半监督语义分割

语义分割+半监督学习

Negative Pseudo Labeling using Class Proportion for Semantic Segmentation in Pathology

作者 | Hiroki Tokunaga, Brian Kenji Iwana, Yuki Teramoto, Akihiko Yoshizawa, Ryoma Bise

单位 | 日本九州大学;Kyoto University Hospital

论文 | https://arxiv.org/abs/2007.08044

备注 | ECCV 2020

Semi-supervised Semantic Segmentation via Strong-weak Dual-branch Network

作者 | Wenfeng Luo, Meng Yang

单位 | 中山大学等

论文 | https://www.ecva.net/papers/eccv_2020/

papers_ECCV/papers/123500766.pdf

备注 | ECCV 2020

   少样本语义分割

语义分割+少样本分割+少样本学习

Prototype Mixture Models for Few-shot Semantic Segmentation

作者 | Boyu Yang, Chang Liu, Bohao Li, Jianbin Jiao, Qixiang Ye

单位 | 国科大

论文 | https://arxiv.org/abs/2008.03898

代码 | https://github.com/Yang-Bob/PMMs

备注 | ECCV 2020

Part-aware Prototype Network for Few-shot Semantic Segmentation

作者 | 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值