自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(33)
  • 资源 (81)
  • 论坛 (1)

转载 百度AI 17篇 CVPR 2019 论文介绍(附下载)

本文转载自AI科技大本营。整理| 阿司匹林出品 | AI科技大本营(公众号id:rgznai100)计算机视觉和模式识别大会CVPR 2019即将于6月在美国长滩召开,作为人工智能领域...

2019-04-29 21:53:27 60

转载 近期计算机视觉相关算法竞赛汇总—高额奖金等你来拿!

点击我爱计算机视觉标星,更快获取CVML新技术计算机视觉是应用性很强的学科,学术界和产业界有很多知名的来自实际应用场景的算法问题大赛,很多还有巨额奖金,今天把搜集到的一些现在还能报名的有...

2019-04-28 23:59:17 117

原创 CV Code | 本周新出计算机视觉开源代码汇总(语义分割、目标检测、超分辨率、网络结构设计、训练策略等)...

点击我爱计算机视觉标星,更快获取CVML新技术CV君汇总了过去一周计算机视觉领域新出的开源代码,涉及到图像增广、医学图像分割、图像恢复、目标检测、语义分割、超分辨率、显著目标检测、轻量级...

2019-04-27 23:59:35 79

转载 ICCV2019 Workshop—VisDrone2019 Challenge 无人机视觉挑战赛

VisDrone 2019VisDrone 2019挑战赛将于2019年10月在韩国首尔举行的ICCV 2019研讨会“Vision Meets Drone:A Challenge”(简...

2019-04-27 23:59:35 145

转载 IIAI CVPR 2019 跟踪、检测、分割论文荐读

点击我爱计算机视觉标星,更快获取CVML新技术本文转载自起源人工智能研究院。撰稿:Fahad Khan,孙国磊,廖胜才,卢宪凯导语CVPR (Conference on Computer...

2019-04-26 17:35:00 62

转载 【ICIP2019竞赛】 恶劣天气下的图像增强竞赛

点击我爱计算机视觉标星,更快获取CVML新技术本次竞赛侧重雨天雾天图像恢复,欢迎大家报名参加。详情参见:https://pkustruct.github.io/icip2019.html...

2019-04-25 23:54:37 125

原创 CVPR 2019 Oral | 华科开源效果超群的人体姿态迁移算法

置顶我爱计算机视觉,更快获取CVML新技术今天跟大家重磅介绍华中科技大学刚刚开源的一款人体姿态迁移算法,其基于GAN思想构建,效果好到简直令人不可思议,论文《Progressive Po...

2019-04-25 23:54:37 87

原创 Zeusee 开源移动端车型识别系统HyperVID

置顶我爱计算机视觉,更快获取CVML新技术在计算机视觉的应用中,人和车的分析是商业化最多的方向。除了大家常见的车牌识别,车辆检测、跟踪、重识别、车流量统计、车型识别都是最近落地比较多的应...

2019-04-24 12:08:04 95

原创 谷歌新开源的MorphNet到底能为我们做什么?

置顶我爱计算机视觉,更快获取CVML新技术几天前,谷歌AI Blog官宣开源MorphNet,标题为“MorphNet: Towards Faster and Smaller Neura...

2019-04-23 18:34:24 67

原创 深度学习超分辨率最新综述:一文道尽技术分类与效果评测

置顶我爱计算机视觉,更快获取CVML新技术最近52CV介绍了好几篇图像超分辨率的工作,比如:CVPR 2019 神奇的超分辨率算法DPSR:应对图像模糊降质CVPR 2019 | 旷视提...

2019-04-22 20:27:21 111

原创 CV Code | 本周新出计算机视觉开源代码汇总(含图像修复、目标检测、医学图像分割、度量学习等)...

点击我爱计算机视觉标星,更快获取CVML新技术CV君汇总了过去一周计算机视觉领域新出的开源代码,涉及到图像质量评价、图像去雾、图像修复、医学图像分割、目标检测、人脸对齐、度量学习等,其中...

2019-04-21 21:44:17 61

原创 CVPR 2019 Oral | 视觉识别新范式:开放世界下的大规模长尾识别

置顶我爱计算机视觉,更快获取CVML新技术上周一篇发布于arXiv的CVPR 2019 Oral论文引起了广泛的关注,来自香港中文大学与加州大学伯克利分校的研究学者重新思考了真实世界的视...

2019-04-21 21:44:17 165

转载 谷歌AI:根据视频生成深度图,效果堪比激光雷达

图灵TOPIA作者:Ariel Gordon等编译:刘静图灵联邦编辑部出品从视频中估计3D结构和相机运动是计算机视觉中的一个关键问题,这个技术在自动驾驶领域有着广阔的工业应用前景。目前自...

2019-04-20 20:10:50 78

转载 CVPR 2019 | 旷视提出新型目标检测损失函数:定位更精准

点击我爱计算机视觉标星,更快获取CVML新技术52CV曾经第一时间报道过Softer-NMS:CMU&旷视最新论文提出定位更加精确的目标检测算法,当时引起了不少读者对Softer...

2019-04-20 20:10:50 100

转载 Google CVPR 2019最新成果!用神经架构搜索实现更好的目标检测

图灵TOPIA作者:Golnaz Ghaisi等编译:刘静图灵联邦编辑部出品4月16日,arXiv公布了一篇谷歌大脑的最新成果论文,已被CVPR 2019接收。研究人员采用神经网络架构搜...

2019-04-19 17:37:25 89

转载 CVPR 2019 | 智能体张量融合,一种保持空间结构信息的轨迹预测方法

导读本文是计算机视觉领域国际顶级会议CVPR 2019入选论文《Multi Agent Tensor Fusion for Contextual Trajectory Predictio...

2019-04-18 23:27:49 92

转载 分享一个绝佳的实战机器学习的机会,边学边比拿奖金!

免费GPU+实时训练+每周上线两个以上竞赛项目官网:www.flyai.com上周日,CV君跟一位粉丝20W+的Python大佬交流,他说自己在网上推出一门课程,有50个人感兴趣学完了第...

2019-04-18 23:27:49 56

原创 StegaStamp:加州大学伯克利分校开源神奇的照片隐写术,打印的照片能当二维码用...

点击我爱计算机视觉标星或置顶,更快获取CVML新技术要说目前最火的用到手机摄像头的应用是什么,毫无疑问非二维码识别莫属了。微信带起来的二维码热,几乎已经改变了整个世界的支付方式、社交方式...

2019-04-17 17:25:18 133

原创 分割、检测与定位,高分辨率网络显神威!这会是席卷深度学习的通用结构吗?...

点击我爱计算机视觉标星,更快获取CVML新技术52CV曾经第一时间报道过CVPR2019 | 微软、中科大开源基于深度高分辨表示学习的姿态估计算法,此后该文引起不少媒体的关注。当时CV君...

2019-04-16 19:00:39 61

原创 CV Code | 本周新出计算机视觉开源代码汇总(含实例分割、行人检测、姿态估计、神经架构搜索、超分辨率等)...

点击我爱计算机视觉标星,更快获取CVML新技术计算机视觉技术发展迅速,很多时候,可悲的不是我们没有努力,而是没有跟上时代的步伐。努力coding终于出来结果了,却发现早就有人开源了,效果...

2019-04-14 23:56:29 77

原创 CVPR 2019 神奇的超分辨率算法DPSR:应对图像模糊降质

点击我爱计算机视觉标星,更快获取CVML新技术上两幅图像中上面为低分辨率模糊图像,下面大图来自几天前刚出来的超分辨率算法DPSR的结果。在我们的印象中,往往超分辨率后的图像会看起来轻微...

2019-04-13 21:41:45 111

原创 2DASL:目前最好的开源人脸3D重建与密集对齐算法

点击我爱计算机视觉标星或置顶,更快获取CVML新技术之前52CV曾经报道过PRNet:人脸3D重建与密集对齐,其结果非常惊艳,在很多人脸应用中都有用武之地。最近同样专注于3D人脸重建与密...

2019-04-11 17:04:00 121

原创 FoveaBox:目标检测新纪元,无Anchor时代来临!

点击我爱计算机视觉标星,更快获取CVML新技术目标检测的任务是“分类”并从图像中“定位”出物体,但长久以来,该领域的工作大多是这样:生成可能包含目标的区域,然后在该区域提取特征并分类。显...

2019-04-10 19:37:03 57

转载 何恺明随机连接神经网络复现

点击我爱计算机视觉标星,更快获取CVML新技术相信大家最近两天都被何恺明大佬的最新文章给轰炸了:随机连接神经网络性能超过人工设计!何恺明等人发布新研究网络拓扑结构画出来很魔性:性能超越人...

2019-04-10 19:37:03 64

原创 CVPR 2019 行人检测新思路:高级语义特征检测取得精度新突破

点击我爱计算机视觉置顶或标星,更快获取CVML新技术今天跟大家分享一篇昨天新出的CVPR 2019论文《High-level Semantic Feature Detection:A N...

2019-04-09 09:02:00 97

原创 本周新出开源计算机视觉代码汇总(含图像超分辨、视频目标分割、行人重识别、点云识别等)...

点击我爱计算机视觉标星,更快获取CVML新技术今天汇总了本周新出的计算机视觉开源代码。(有部分已经有git地址但还没上传代码)共有12份来自前沿计算机视觉研究的代码,CV君数了数,竟然发...

2019-04-06 23:27:54 97

转载 13篇京东CVPR 2019论文!你值得一读~

本文来自AI科技大本营。编者按:计算机视觉和模式识别大会 CVPR(Conference on Computer Vision and Pattern Recognition)作为人工智...

2019-04-05 14:18:28 73

转载 撒花!斯坦福深度学习最新视频发布,吴恩达主讲!

点击上方“我爱计算机视觉”,选择“置顶”公众号重磅干货,第一时间送达日前,由吴恩达开设的斯坦福深度学习课程 CS230 课程视频发布到了网上。视频摄制于 2018 年秋季,时隔半年,线上...

2019-04-04 18:49:12 67

转载 计算摄影技术:身怀绝技的扫地僧

点“我爱计算机视觉”关注,置顶更快接收消息!作者:Wang Hawk原文:https://zhuanlan.zhihu.com/p/51490200一. 计算摄影学介绍计算摄影是什么?...

2019-04-04 18:49:12 132

转载 如何从900万张图片中对600类照片进行分类,附代码

作者 |Aleksey Bilogur译者 | 风车云马责编 | Jane出品 | AI科技大本营(公众号id:rgznai100) 【导语】完成一个简单的端到端的机器学习模型需要几...

2019-04-03 20:12:36 41

转载 移动端70+fps!谷歌新出高效实时视频目标检测

本文转载自极市平台(extrememart)。作者简介陈泰红:算法工程师,研究方向为机器学习、图像处理图像目标检测是图像处理领域的基础。自从2012年CNN的崛起,深度学习在Detect...

2019-04-02 09:22:53 61

转载 今日新出!旷视提出One-Shot模型搜索框架的新变体

点击我爱计算机视觉标星,更快获取CVML新技术这篇文章为旷视科技来稿,解读了今天arXiv新出论文Single Path One-Shot Neural Architecture Sea...

2019-04-02 09:22:53 96

转载 单目可见光静默活体检测 Binary or Auxiliary Supervision论文解读

点击我爱计算机视觉标星,更快获取CVML新技术前段时间,52CV正式运营子品牌OpenCV中文网公众号,旨在分享最新的OpenCV实用技术与计算机视觉突破,无意中分享了两篇活体检测的代码...

2019-04-01 20:00:17 273

人脸识别现有应用介绍

人脸识别现有应用介绍 人脸识别 汉王 飞瑞斯 中控

2011-01-17

采用LBP金字塔的人脸描述与识别

采用LBP金字塔的人脸描述与识别脸识别 多尺度分析 LBP金字塔 直方图

2010-09-25

handwriten digit recognition by combined classifiers

UCI多特征数据库的原始文献,handwriten digit recognition by combined classifiers

2010-09-25

Automatic visual/IR image registration

A feature-based approach to visual/IR sensor image registra- tion is presented.This new method overcomes the difficulties caused by the discrepancy in data’s gray-scale characteristics and the problem of feature inconsistency.It employs a wavelet-based feature extractor to locate point features from contours based on local statistics of the image intensity.Matching is carried out at multiresolution levels based on point features.A consistency-checking step is involved to eliminate mis- matches.The algorithm is accurate,robust,and fast.It is capable of handling images with considerable translation,scaling,and rotation.De- tails on the registration algorithm including feature extraction,matching, consistency checking,and the image transformation model are dis- cussed.Experimental results using real visual/IR sensor data are presented.

2010-09-25

Statistical Pattern Recognition:A Review

The primary goal of pattern recognition is supervised or unsupervised classification.Among the various frameworks in which pattern recognition has been traditionally formulated,the statistical approach has been most intensively studied and used in practice.More recently,neural network techniques and methods imported from statistical learning theory have been receiving increasing attention.The design of a recognition system requires careful attention to the following issues:definition of pattern classes, sensing environment,pattern representation,feature extraction and selection,cluster analysis,classifier design and learning,selection of training and test samples,and performance evaluation.In spite of almost 50 years of research and development in this field,the general problem of recognizing complex patterns with arbitrary orientation,location,and scale remains unsolved.New and emerging applications,such as data mining,web searching,retrieval of multimedia data,face recognition,and cursive handwriting recognition, require robust and efficient pattern recognition techniques.The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

2010-09-25

LBP相关文献及Matlab程序

LBP相关文献及Matlab程序LBP文献 Matlab程序

2010-09-25

LBP人脸识别Yale数据库

LBP人脸识别Yale数据库,LBP 人脸识别 Yale数据库 matlab数据和程序 不是我写的。

2010-09-25

基于组合特征的车牌字符识别

车牌字符识别 Zernike矩 小波变换 特征提取 基于组合特征的车牌字符识别

2010-09-25

结合Zernike矩的多尺度模板形状匹配

结合Zernike矩的多尺度模板形状匹配,目标识别 形状匹配 小波变换 Zernike矩 。

2010-09-25

Zernike矩的快速算法

Zernike矩的快速算法,论文,可以参考下。

2010-09-25

联机手写数字识别程序

联机手写数字识别程序,不是我写的,分享一下。

2010-09-25

2010年第七届全国研究生数学建模竞赛试题与附件

2010年第七届全国研究生数学建模竞赛试题与附件包括ABCD四题

2010-09-17

文件批量命名工具FileBatchRemaerExe

文件批量命名工具 FileBatchRemaerExe

2010-07-31

OpenCV1.2安装文件

OpenCV1.2安装文件,计算机视觉开源函数库。

2010-07-31

rgb2hsi转换函数Matlab

图像从RGB空间转换到HSI空间,Matlab函数

2010-07-31

流形学习问题manifold study

线性维数约简方法 流形和维数约简. 流形学习的一些数学基础. 几种流形学习算法简介:LLE, Isomap, Laplacian Eigenmap. 流形学习问题的简单探讨.

2010-06-29

贝叶斯决策理论机器学习数据挖掘

贝叶斯分类器 正态分布决策理论 关于分类的错误率分析 最小风险Bayes分类器 Bayes分类器算法和例题 聂曼-皮尔逊判别准则 最大最小判别准则 决策树 序贯分类

2010-06-29

MathematicalProblemsinImageProcessing

Contents Foreword vii Preface to the Second Edition xi Preface to the First Edition xv Guide to the Main Mathematical Concepts and Their Application xxv Notation and Symbols xxvii 1 Introduction 1 1.1 The Image Society.....................1 1.2 What Is a Digital Image?..................3 1.3 About Partial Di?erential Equations(PDEs).......5 1.4 Detailed Plan........................5 2 Mathematical Preliminaries 29 How to Read This Chapter....................29 2.1 The Direct Method in the Calculus of Variations.....30 2.1.1 Topologies on Banach Spaces...........30 2.1.2 Convexity and Lower Semicontinuity.......32 2.1.3 Relaxation......................37 2.1.4 AboutΓ-Convergence................40 2.2 The Space of Functions of Bounded Variation......42xx Contents 2.2.1 Basic Definitions on Measures...........43 2.2.2 Definition of BV(?)................45 2.2.3 Properties of BV(?)................46 2.2.4 Convex Functions of Measures...........50 2.3 Viscosity Solutions in PDEs................50 2.3.1 About the Eikonal Equation............50 2.3.2 Definition of Viscosity Solutions..........52 2.3.3 About the Existence................54 2.3.4 About the Uniqueness...............55 2.4 Elements of Di?erential Geometry:Curvature......57 2.4.1 Parametrized Curves................58 2.4.2 Curves as Isolevel of a Function u.........58 2.4.3 Images as Surfaces.................59 2.5 Other Classical Results Used in This Book........60 2.5.1 Inequalities.....................60 2.5.2 Calculus Facts....................62 2.5.3 About Convolution and Smoothing........62 2.5.4 Uniform Convergence................63 2.5.5 Dominated Convergence Theorem.........64 2.5.6 Well-Posed Problems................64 3 Image Restoration 65 How to Read This Chapter....................65 3.1 Image Degradation.....................66 3.2 The Energy Method.....................68 3.2.1 An Inverse Problem.................68 3.2.2 Regularization of the Problem...........69 3.2.3 Existence and Uniqueness of a Solution for the Minimization Problem.............72 3.2.4 Toward the Numerical Approximation......76 The Projection Approach..............76 The Half-Quadratic Minimization Approach...79 3.2.5 Some Invariances and the Role ofλ........87 3.2.6 Some Remarks on the Nonconvex Case......90 3.3 PDE-Based Methods....................94 3.3.1 Smoothing PDEs..................95 The Heat Equation.................95 Nonlinear Di?usion.................98 The Alvarez–Guichard–Lions–Morel Scale Space Theory.................107 Weickert’s Approach................113 Surface Based Approaches.............117 3.3.2 Smoothing–Enhancing PDEs............121 The Perona and Malik Model...........121Contents xxi Regularization of the Perona and Malik Model: Catt′e et al......................123 3.3.3 Enhancing PDEs..................128 The Osher and Rudin Shock Filters........128 A Case Study:Construction of a Solution by the Method of Characteristics...........130 Comments on the Shock-Filter Equation.....134 3.3.4 Neighborhood Filters,Nonlocal Means Algorithm, and PDEs......................137 Neighborhood Filters................138 How to Suppress the Staircase E?ect?......143 Nonlocal Means Filter(NL-Means)........146 4 The Segmentation Problem 149 How to Read This Chapter....................149 4.1 Definition and Objectives..................150 4.2 The Mumford and Shah Functional............153 4.2.1 A Minimization Problem..............153 4.2.2 The Mathematical Framework for the Existence of a Solution...............154 4.2.3 Regularity of the Edge Set.............162 4.2.4 Approximations of the Mumford and Shah Functional......................166 4.2.5 Experimental Results................171 4.3 Geodesic Active Contours and the Level-Set Method...173 4.3.1 The Kass–Witkin–Terzopoulos model.......173 4.3.2 The Geodesic Active Contours Model.......175 4.3.3 The Level-Set Method...............182 4.3.4 The Reinitialization Equation...........194 Characterization of the Distance Function....195 Existence and Uniqueness.............198 4.3.5 Experimental Results................206 4.3.6 About Some Recent Advances...........208 Global Stopping Criterion.............208 Toward More General Shape Representation...211 5 Other Challenging Applications 213 How to Read This Chapter....................213 5.1 Reinventing Some Image Parts by Inpainting.......215 5.1.1 Introduction.....................215 5.1.2 Variational Models.................216 The Masnou and Morel Approach.........216 The Ballester et al.Approach...........218 The Chan and Shen Total Variation Minimization Approach.................220xxii Contents 5.1.3 PDE-Based Approaches..............222 The Bertalmio et al.Approach...........223 The Chan and Shen Curvature-Driven Di?usion Approach.................224 5.1.4 Discussion......................225 5.2 Decomposing an Image into Geometry and Texture...228 5.2.1 Introduction.....................228 5.2.2 A Space for Modeling Oscillating Patterns....229 5.2.3 Meyer’s Model....................232 5.2.4 An Algorithm to Solve Meyer’s Model......233 Prior Numerical Contribution...........234 The Aujol et al.Approach.............234 Study of the Asymptotic Case...........241 Back to Meyer’s Model...............242 5.2.5 Experimental Results................245 Denoising Capabilities...............245 Dealing With Texture...............248 5.2.6 About Some Recent Advances...........248 5.3 Sequence Analysis......................249 5.3.1 Introduction.....................249 5.3.2 The Optical Flow:An Apparent Motion.....250 The Optical Flow Constraint(OFC).......252 Solving the Aperture Problem...........253 Overview of a Discontinuity-Preserving Variational Approach................256 Alternatives to the OFC..............260 5.3.3 Sequence Segmentation...............261 Introduction.....................261 A Variational Formulation.............264 Mathematical Study of the Time-Sampled Energy...............265 Experiments.....................269 5.3.4 Sequence Restoration................271 Principles of Video Inpainting...........276 Total Variation(TV)Minimization Approach..277 Motion Compensated(MC)Inpainting......277 5.4 Image Classification.....................281 5.4.1 Introduction.....................281 5.4.2 A Level-Set Approach for Image Classification.................282 5.4.3 A Variational Model for Image Classification and Restoration.....................290 5.5 Vector-Valued Images....................299 5.5.1 Introduction.....................299 5.5.2 An Extended Notion of Gradient.........300Contents xxiii 5.5.3 The Energy Method................300 5.5.4 PDE-Based Methods................302 A Introduction to Finite Di?erence Methods 307 How to Read This Chapter....................307 A.1 Definitions and Theoretical Considerations Illustrated by the 1-D Parabolic Heat Equation............308 A.1.1 Getting Started...................308 A.1.2 Convergence.....................311 A.1.3 The Lax Theorem..................313 A.1.4 Consistency.....................313 A.1.5 Stability.......................315 A.2 Hyperbolic Equations....................320 A.3 Di?erence Schemes in Image Analysis...........329 A.3.1 Getting Started...................329 A.3.2 Image Restoration by Energy Minimization...333 A.3.3 Image Enhancement by the Osher and Rudin Shock Filters....................336 A.3.4 Curve Evolution with the Level-Set Method...338 Mean Curvature Motion..............339 Constant Speed Evolution.............340 The Pure Advection Equation...........341 Image Segmentation by the Geodesic Active Contour Model...............342 B Experiment Yourself!343 How to Read This Chapter....................343 B.1 The CImg Library......................344 B.2 What Is Available Online?.................344 References 349 Index 373

2010-06-25

OpenCV1.0安装文件

在VC6下配置OpenCV1.0文档。 http://www.opencv.org.cn/index.php/VC6%E4%B8%8B%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AEOpenCV1.0

2010-06-25

表达式求值C++代码

表达式求值C++代码,我测试过,挺好用。遇到类似问题,可以参考一下。

2010-06-13

支持基本RichText编辑功能的消息应用程序附件

注意:这个资源是中兴捧月的一题,我保存下来自己看的,网上可以找到,大家就不要下载了吧 请基于高通BREW SDK及模拟器开发包,为类似手机设备这样的小型终端,设计一个支持基本的RichText编辑功能的类似短消息的brew应用程序。 初赛要求: 1、 该应用第一阶段至少支持消息内容的编辑功能,消息的保存和阅读、删除功能。在编辑界面的任意位置可以实现字符,动画,图片,铃音的插入和删除功能。如下图: 2、 界面一级菜单至少包含:新建消息,草稿箱,帮助 3、 实现一个编辑功能BREW接口控件,至少支持以下要求: (1)编辑内容时能输入文本,并能设置文本的字体大小(大字体、小字体两种) (2)编辑内容时能能插入图片,图片格式为BMP文件,32x32像素,256色 (3)编辑内容时能插入动画,动画格式为4幅(2)要求BMP的图片,当光标移动到动画位置时,能播放动画,当光标移开时,停止播放 (4)编辑内容时能插入铃音,铃音格式为标准MIDI文件,大小32k以内,当光标移动到铃音位置时能够播放铃音,当光标移开时,停止播放 4、 能将编辑的内容保存到一个草稿箱消息文件,该文件格式可以自己定义,但要保证文本、图片、声音的数据保存完整 5、 支持草稿箱阅读保存的内容。所有输入内容能正常显示、播放 6、 支持草稿箱删除消息功能 实现技术提示信息: BREW SDK 模拟器可以在windows操作系统平台直接运行,可以结合visual studio 6.0 IDE 环境方便代码工程管理和代码调试。BREW应用开发语言为C语言。 BREW SDK已经提供了接口,支持了BMP图片显示及MIDI文件的播放。 参考资料信息: 可从https://brewx.qualcomm.com/brew/sdk/download.jsp,高通公司的官方网站下载安装。进入网站下载页面后,用自己的电子邮箱地址注册帐号,即可下载BREW SDK。 BREW SDK中已携带参考文档: 1) 《BREWSDKUserDocs.chm》 2) 《BREWAPIReference.chm》 3) 《BREWSDKUserDocs.chm》 3GPP TS 23.040 V530文档(请见附件): www.3GPP.org,也可在网上找到该文档的其他版本 审核标准: 1、 设计文档是否有效解决了题目问题,是否清晰反映了设计者的设计思路,文档结构组织是否合理 2、 参赛程序对题目所要求功能的实现程度 3、 参赛作品是否具有很好的可读性和运行效率,资源占用情况是否合适

2010-06-09

南京理工大学计算机学院复试上机编程题目

南京理工大学计算机学院复试上机编程题目,需要的可以看看。不过这是前几年的。

2010-05-28

南京理工大学数据库系统

南京理工大学数据库系统课件和部分练习题,考研的同学可以参考一下。

2010-05-28

南京理工大学数据结构

南京理工大学数据结构,考研的同学可以参考一下。

2010-05-28

南京理工软件工程讲稿

南京理工软件工程讲稿,考研的可以参考一下。

2010-05-28

南京理工大学操作系统课件

南京理工大学 操作系统 课件,考研的同学可以下载参考。

2010-05-28

南京理工大学计算机网络课件

南京理工大学计算机网络课件, computer networking,考研的同学可以参考。

2010-05-28

数学建模个人经验谈共九个部分

包括:组队和分工,选题,文献资料查找,论文写作,培训,实践,如何写好数学建模论文和一些个人心得。 不是我写的。 大家备战数模的可以参考一下。 我在本科阶段没有参加过数学建模,因为有一种畏惧感,觉得那是数学学得很好的人才能做得来的。研究生阶段第一次抱着试一试的心态参加了第六届研究生数模,个人感觉没有想象中的那么难,而且所解决的问题很有挑战性也比较有价值,最终拿了个三等奖。 研究生建模竞赛的好处是:自己组队,没有指导老师,不会有为了学校获奖老师给学生出方案的情况(可能也会有,不过是不被允许的),更客观。 总的来讲,数学建模是体现一个人综合解决问题能力的一个平台,研究生数学建模竞赛更是有很多科研的成分,很有挑战性。

2010-05-19

2010成都信息工程学院研究生数模赛题

投票倾向问题 2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题

2010-05-19

weka使用教程中文版

目录 1. 简介2. 数据格式3.数据准备4. 关联规则(购物篮分析)5. 分类与回归6. 聚类分析

2010-05-19

实对称矩阵对角化含Matlab代码

实对称矩阵,对角化,有两篇论文,内含Matlab实现代码,在文章里的,可以直接写下来使用。测试过,还可以。

2010-05-19

经过裁剪预处理的面部表情识别研究用JAFFE数据库

网上JAFFE数据库几乎都是原始数据库,未经人脸裁剪/人脸剪切的,这个数据库是经过预处理的,已经将人脸利于面部表情识别的部分剪切出来,并存成64*82大小图像(详细裁剪算法请参考张一鸣,《面部表情识别》,该裁剪程序可在我的另一个资源里找到),按照类别分成7组,并详细标明各组所属表情分类,可直接用于面部表情识别实验。

2010-05-12

人脸面部表情识别日本jaffe数据库

人脸表情识别日本jaffe数据库,是表情识别领域应用最为广发的一个数据库之一,总共包含7种表情。

2010-05-12

人脸表情识别论文人脸预处理人脸检测裁剪特征提取模式分类

是篇硕士论文,详细介绍了人脸表情识别的预处理,特征提取,分类识别和系统设计各个阶段,是表情识别入门读物。

2010-05-12

人脸表情识别预处理人脸裁剪系统Face Cropping人脸裁切

该程序是为人脸表情识别研究实验人脸预处理阶段而开发的半自动人脸裁剪系统,因为大部分人脸表情数据库都是未经裁剪/裁切的,而去除背景是人脸表情识别预处理的重要一步。网上有很多人脸数据库,但大部分是未经裁剪/人脸裁切处理的,不能直接用于人脸表情识别试验。 该程序是为人脸表情识别研究实验人脸预处理阶段而开发的半自动人脸裁剪/人脸裁切系统,因为大部分人脸数据库都是未经裁剪的,而去除背景是人脸表情识别预处理的重要一步。 图像归一化为64*82大小,归一化方案请参见张一鸣,《人脸表情识别》。采用OpenCV+MFC制作,不提供源代码。用到的同学可以下载。 敬告:因为本程序读取.tif格式图像使用OpenCV函数,而.tif格式本身的复杂性导致没有通用的读取函数,故对有些.tif图像可能会出问题。

2010-05-12

人脸识别预处理人脸裁剪系统Face Cropping人脸裁切

网上有很多人脸数据库,但大部分是未经裁剪处理的,不能直接用于人脸识别试验。而整个网络也几乎找不到人脸裁剪/人脸裁切的工具,广大初入人脸识别研究领域的人不知如何入手。 该程序是为人脸识别研究实验人脸预处理阶段而开发的半自动人脸裁剪/人脸裁切系统,因为大部分人脸数据库都是未经裁剪/裁切的,而去除背景是人脸识别预处理的重要一步。 采用OpenCV+MFC制作,不提供源代码。用到的同学可以下载。 敬告:因为本程序读取.tif格式图像使用OpenCV函数,而.tif格式本身的复杂性导致没有通用的读取函数,故对有些特殊格式的.tif图像可能会出问题。

2010-05-12

kMeansCluster k均值聚类算法Matlab代码实现

kMeansCluster k均值聚类算法Matlab代码实现,聚类里的经典算法。可以参考应用。

2010-05-09

实对称矩阵相似对角化Matlab程序

实对称矩阵相似对角化Matlab程序,用到的朋友可以下载看看。

2010-05-07

人脸识别研究用ORL数据库

人脸识别 ORL数据库 图像和.mat数据 不需裁剪和预处理可直接用于实验。

2010-05-06

经过裁剪预处理的人脸识别研究用FERET数据库

经过裁剪预处理的人脸识别研究用FERET数据库(美国军方数据库),共有200个人,每个人7幅图像,包括图像和.mat数据,可以直接用于人脸识别实验。

2010-05-06

谁能详细介绍下判别模型和生成模型?

发表于 2011-11-23 最后回复 2011-11-23

空空如也
提示
确定要删除当前文章?
取消 删除