自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(36)
  • 资源 (81)
  • 论坛 (1)

转载 非常全面的AutoML资源,看这个就够了!

点击我爱计算机视觉标星,更快获取CVML新技术整理 | Rachel责编 | 琥珀出品 | AI科技大本营(id:rgznai100)深度学习的发展促进了相关应用的涌现。但是,深度学...

2019-05-31 17:42:47 94

原创 Kaggle实战目标检测奇淫技巧合集

点击我爱计算机视觉标星,更快获取CVML新技术本文来自52CV群友Spytensor参加Kaggle目标检测比赛的总结,作者是位数据竞赛爱好者,文章非常具有实战意义。欢迎收藏~原文链接:...

2019-05-30 19:32:40 123

原创 谷歌大脑提出EfficientNet平衡模型扩展三个维度,取得精度-效率的最大化!

点击我爱计算机视觉标星,更快获取CVML新技术今天要跟大家重磅介绍上午谷歌大脑新出的论文《EfficientNet: Rethinking Model Scaling for Convo...

2019-05-30 19:32:40 62

转载 CVPR 2019 IIAI 目标计数

点击我爱计算机视觉标星,更快获取CVML新技术本文来自起源人工智能研究院(IIAI)。本期以Object Counting为主题,简要介绍IIAI CVPR 2019录用论文中关于Cou...

2019-05-30 19:32:40 92

转载 重磅!谷歌大脑提出EfficientNet平衡模型扩展三个维度,取得精度-效率的最大化!...

点击我爱计算机视觉标星,更快获取CVML新技术今天要跟大家重磅介绍上午谷歌大脑新出的论文《EfficientNet: Rethinking Model Scaling for Convo...

2019-05-29 19:40:14 71

转载 【项目合作】低清老视频转高清,视频超分辨

点击我爱计算机视觉标星,更快获取CVML新技术 项目需求方希望借助视频超分辨率技术实现低清老视频的高清化,寻有技术实力的技术团队或个人进行项目外包。项目需求主要参考文献...

2019-05-28 22:14:30 78

原创 CVPR 2019 | 国防科大提出双目超分辨算法,效果优异代码已开源

点击我爱计算机视觉标星,更快获取CVML新技术近年来,双摄像头成像系统在智能手机、自动驾驶等领域取得了广泛的应用。近日,来自国防科技大学等单位的学者提出了新型双目超分辨算法,充分利用了左...

2019-05-28 22:14:30 226

原创 快了!CVPR 2019 所有录用论文题目列表刊出,即将开放下载!

点击我爱计算机视觉标星,更快获取CVML新技术早前CVPR 2019 已经公布了录用论文列表,可惜只有论文编号:http://cvpr2019.thecvf.com/files/cvpr...

2019-05-27 19:35:15 69

原创 CV Code | 本周新出计算机视觉开源代码汇总(南理SGE 和Intel的实时动作识别很吸引人)...

点击我爱计算机视觉标星,更快获取CVML新技术本周新出的计算机视觉代码不是很多,但都是精品。出自南理工的空域组增强(SGE)网络结构在图像分类和目标检测任务中均表现出一致的有效性,强烈推...

2019-05-26 23:59:53 55

转载 CenterNet:目标即点(代码已开源)

点击我爱计算机视觉标星,更快获取CVML新技术本文经授权转载自极市平台(extrememart)。作者简介TeddyZhang:上海大学研究生在读,研究方向是图像分类、目标检测以及人脸检...

2019-05-25 08:52:51 117

原创 OpenVSLAM:日本先进工业科技研究所新开源视觉SLAM框架

点击我爱计算机视觉标星,更快获取CVML新技术很多人说深度学习和SLAM是计算机视觉目前最火的应用方向。深度学习自不必说,SLAM则已经悄悄走入我们的生活(扫地机器人、无人机、增强现实游...

2019-05-23 19:39:12 121

转载 CVPR 2019 | 告别低分辨率网络,微软提出高分辨率深度神经网络HRNet

我爱计算机视觉曾经两次报道HRNet:1.CVPR2019 | 微软、中科大开源基于深度高分辨表示学习的姿态估计算法(论文出来第二天就向大家推送解读了)2.分割、检测与定位,高分辨率...

2019-05-22 17:52:56 84

转载 一文读懂AUC-ROC

点击我爱计算机视觉标星,更快获取CVML新技术本文来自于纯真学者出神入化公众号。英文原文:https://towardsdatascience.com/understanding-auc...

2019-05-20 17:41:37 95

原创 商汤使用AutoML设计Loss函数,全面超越人工设计

点击我爱计算机视觉标星,更快获取CVML新技术深度学习领域,神经架构搜索得到的算法如雨后春笋般出现。今天一篇arXiv论文《AM-LFS: AutoML for Loss Functio...

2019-05-20 17:41:37 71

原创 漂亮!商汤EDVR算法获NTIRE 2019 视频恢复比赛全部四项冠军,代码将开源!

点击我爱计算机视觉标星,更快获取CVML新技术在CVPR 2019 WorkshopNTIRE 2019 视频恢复比赛中,来自商汤科技、港中文、南洋理工、深圳先进技术研究院的联合研究团...

2019-05-19 21:15:00 177

原创 CV Code | 本周新出计算机视觉开源代码汇总(含语义分割、表情识别、目标跟踪、姿态估计、超分辨率等)...

点击我爱计算机视觉标星,更快获取CVML新技术大家好,又到了周末盘点一周CV开源代码的时间!很高兴这一模块已经被大家所认可。过去的一周:MobileNetV3 的开源犹如一阵旋风,突然出...

2019-05-18 23:26:30 72

转载 CVPR 2019 Oral 亮风台提出端到端投影光学补偿算法,代码已开源

点击我爱计算机视觉置顶,更快获取CVML新技术导读:图像增强是一个历久弥新的研究方向,大多数计算机视觉学习者最开始接触的图像平滑、去噪、锐化是增强,现在研究比较多的去雾、去雨雪、暗光图像...

2019-05-18 23:26:30 68

原创 Pywick:追求功能完备的PyTorch高级训练库

点击我爱计算机视觉标星,更快获取CVML新技术52CV曾经分享过很多CV方面新出的论文和开源技术,我们可以非常明显的感受到,越来越多的人使用PyTorch开发新模型。一个明显的例子:谷歌...

2019-05-17 12:02:16 56

转载 【项目合作】指甲识别与实时渲染

点击我爱计算机视觉标星,更快获取CVML新技术项目需求方为一家智能美甲初创公司,寻团队或者个人实现指甲识别与渲染。对标产品为iOS APP Wanna Nails。指甲识别深度学习算法实...

2019-05-16 20:41:48 91

原创 继往开来!目标检测二十年技术综述

点击我爱计算机视觉标星,更快获取CVML新技术计算机视觉中的目标检测,因其在真实世界的大量应用需求,比如自动驾驶、视频监控、机器人视觉等,而被研究学者广泛关注。几天前,arXiv新出一篇...

2019-05-16 20:41:48 68

原创 精度高、模型小、速度快!梯形DenseNets结构实现语义分割新高度!

点击我爱计算机视觉标星,更快获取CVML新技术今天上午arXiv出现一篇非常值得参考的语义分割文章《Efficient Ladder-style DenseNets for Semant...

2019-05-15 12:02:50 106

原创 C3F:首个开源人群计数算法框架

点击我爱计算机视觉置顶,更快获取CVML新技术导读:52CV曾经报道多篇拥挤人群计数相关的技术,比如最近的:CVPR 2019 | 西北工业大学开源拥挤人群数据集生成工具,大幅提升算法精...

2019-05-14 21:05:00 58

转载 厉害了!谷歌新发布的半监督学习算法降低4倍错误率

点击我爱计算机视觉标星,更快获取CVML新技术昨天跟大家分享了Facebook AI 提出10亿级数据规模的半监督图像分类模型,ImageNet测试精度高达81.2%!,引起了不少朋友的...

2019-05-13 11:33:36 59

转载 Facebook AI 提出10亿级数据规模的半监督图像分类模型,ImageNet测试精度高达81.2%!...

译者 | linstancy作者| I. Zeki Yanlniz, Herve Jegou, Kan Chen, Manohar Paluri, Dhruv Mahajan编辑 | 蓝...

2019-05-12 23:56:23 41

原创 CV Code | 本周新出计算机视觉开源代码汇总(含目标跟踪、语义分割、姿态跟踪、少样本学习等)...

点击我爱计算机视觉标星,更快获取CVML新技术刚刚过去的一周出现了很多很实用、有意思、很神奇的CV代码。比如大家期待的SiamRPN++算法,官方终于要开源了。阿里MNN成为移动端网络部...

2019-05-11 23:39:21 30

原创 推荐!京东开源姿态跟踪新框架LightTrack!

点击我爱计算机视觉标星,更快获取CVML新技术今天,京东数字科技发表论文并开源了轻量级、在线计算、置顶向下的人体姿态跟踪新框架:LightTrack,这是该领域的首个框架!也是最近最值得...

2019-05-09 23:57:46 79

原创 重磅!MobileNetV3 来了!

点击我爱计算机视觉标星,更快获取CVML新技术在现代深度学习算法研究中,通用的骨干网+特定任务网络head成为一种标准的设计模式。比如VGG + 检测Head,或者inception +...

2019-05-08 19:13:23 63

原创 "我爱计算机视觉"干货集锦分类汇总(2019年5月7日)

点击我爱计算机视觉标星,更快获取CVML新技术天下事有难易乎?为之,则难者亦易矣;不为,则易者亦难矣。人之为学有难易乎?学之,则难者亦易矣;不学,则易者亦难矣。——《为学》[清]彭端淑目...

2019-05-07 19:16:33 82

原创 目标检测:Segmentation is All You Need ?

点击我爱计算机视觉标星,更快获取CVML新技术对于目标检测,从滑动窗口时代开始,我们已经习惯了候选区域特征提取然后分类的套路,深度学习时代强大的特征表示能力让我们能够探索不一样的道路,比...

2019-05-07 19:16:33 65

转载 阿里巴巴开源轻量级深度神经网络推理引擎MNN

点击我爱计算机视觉标星,更快获取CVML新技术导读:在移动端进行深度神经网络推理,可以使用腾讯开源的ncnn,或者小米开源的Mace,还有百度家的Paddle-Mobile,他们可以帮助...

2019-05-06 23:59:39 75

转载 目标检测:Segmentation is All You Need ?

点击我爱计算机视觉标星,更快获取CVML新技术对于目标检测,从滑动窗口时代开始,我们已经习惯了候选区域特征提取然后分类的套路,深度学习时代强大的特征表示能力让我们能够探索不一样的道路,比...

2019-05-06 23:59:39 69

原创 CV Code | 本周新出计算机视觉开源代码汇总(含自动驾驶目标检测、医学图像分割、风格迁移、语义分割、目标跟踪等)...

点击我爱计算机视觉标星,更快获取CVML新技术刚刚过去的一周含五一假期,工作日第一天,CV君汇总了过去一周计算机视觉领域新出的开源代码,涉及到自动驾驶目标检测、医学图像分割、风格迁移、神...

2019-05-05 22:42:45 71

转载 冠军方案 | 第二届中国“高分杯”美丽乡村大赛第一名总结

导读:在4月中旬结束的第二届中国“高分杯”美丽乡村大赛中,52CV群友“吃兔子的萝卜”夺得冠军,这篇文章是“吃兔子的萝卜”对获胜方案的简短解读,希望能对做遥感图像、计算机视觉竞赛相关方向...

2019-05-05 22:42:45 71

原创 ICML 2019 反锯齿下采样改进网络平移不变性

点击我爱计算机视觉标星,更快获取CVML新技术前几天看到一篇来自Adobe研究院的论文《Making Convolutional Networks Shift-Invariant Aga...

2019-05-03 23:57:48 93

转载 谷歌Auto-DeepLab:自动搜索图像语义分割架构算法开源实现

点击我爱计算机视觉标星,更快获取CVML新技术本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载。导读:大家都知道语义分割领域DeepLab系列算法的威名...

2019-05-01 23:28:14 40

原创 CVPR 2019 Oral 目标跟踪最强算法SiamRPN++开源实现

点击我爱计算机视觉标星,更快获取CVML新技术SiamRPN++ 算法出自论文:SiamRPN++: Evolution of Siamese Visual Tracking with ...

2019-05-01 23:28:14 177

人脸识别现有应用介绍

人脸识别现有应用介绍 人脸识别 汉王 飞瑞斯 中控

2011-01-17

采用LBP金字塔的人脸描述与识别

采用LBP金字塔的人脸描述与识别脸识别 多尺度分析 LBP金字塔 直方图

2010-09-25

handwriten digit recognition by combined classifiers

UCI多特征数据库的原始文献,handwriten digit recognition by combined classifiers

2010-09-25

Automatic visual/IR image registration

A feature-based approach to visual/IR sensor image registra- tion is presented.This new method overcomes the difficulties caused by the discrepancy in data’s gray-scale characteristics and the problem of feature inconsistency.It employs a wavelet-based feature extractor to locate point features from contours based on local statistics of the image intensity.Matching is carried out at multiresolution levels based on point features.A consistency-checking step is involved to eliminate mis- matches.The algorithm is accurate,robust,and fast.It is capable of handling images with considerable translation,scaling,and rotation.De- tails on the registration algorithm including feature extraction,matching, consistency checking,and the image transformation model are dis- cussed.Experimental results using real visual/IR sensor data are presented.

2010-09-25

Statistical Pattern Recognition:A Review

The primary goal of pattern recognition is supervised or unsupervised classification.Among the various frameworks in which pattern recognition has been traditionally formulated,the statistical approach has been most intensively studied and used in practice.More recently,neural network techniques and methods imported from statistical learning theory have been receiving increasing attention.The design of a recognition system requires careful attention to the following issues:definition of pattern classes, sensing environment,pattern representation,feature extraction and selection,cluster analysis,classifier design and learning,selection of training and test samples,and performance evaluation.In spite of almost 50 years of research and development in this field,the general problem of recognizing complex patterns with arbitrary orientation,location,and scale remains unsolved.New and emerging applications,such as data mining,web searching,retrieval of multimedia data,face recognition,and cursive handwriting recognition, require robust and efficient pattern recognition techniques.The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

2010-09-25

LBP相关文献及Matlab程序

LBP相关文献及Matlab程序LBP文献 Matlab程序

2010-09-25

LBP人脸识别Yale数据库

LBP人脸识别Yale数据库,LBP 人脸识别 Yale数据库 matlab数据和程序 不是我写的。

2010-09-25

基于组合特征的车牌字符识别

车牌字符识别 Zernike矩 小波变换 特征提取 基于组合特征的车牌字符识别

2010-09-25

结合Zernike矩的多尺度模板形状匹配

结合Zernike矩的多尺度模板形状匹配,目标识别 形状匹配 小波变换 Zernike矩 。

2010-09-25

Zernike矩的快速算法

Zernike矩的快速算法,论文,可以参考下。

2010-09-25

联机手写数字识别程序

联机手写数字识别程序,不是我写的,分享一下。

2010-09-25

2010年第七届全国研究生数学建模竞赛试题与附件

2010年第七届全国研究生数学建模竞赛试题与附件包括ABCD四题

2010-09-17

文件批量命名工具FileBatchRemaerExe

文件批量命名工具 FileBatchRemaerExe

2010-07-31

OpenCV1.2安装文件

OpenCV1.2安装文件,计算机视觉开源函数库。

2010-07-31

rgb2hsi转换函数Matlab

图像从RGB空间转换到HSI空间,Matlab函数

2010-07-31

流形学习问题manifold study

线性维数约简方法 流形和维数约简. 流形学习的一些数学基础. 几种流形学习算法简介:LLE, Isomap, Laplacian Eigenmap. 流形学习问题的简单探讨.

2010-06-29

贝叶斯决策理论机器学习数据挖掘

贝叶斯分类器 正态分布决策理论 关于分类的错误率分析 最小风险Bayes分类器 Bayes分类器算法和例题 聂曼-皮尔逊判别准则 最大最小判别准则 决策树 序贯分类

2010-06-29

MathematicalProblemsinImageProcessing

Contents Foreword vii Preface to the Second Edition xi Preface to the First Edition xv Guide to the Main Mathematical Concepts and Their Application xxv Notation and Symbols xxvii 1 Introduction 1 1.1 The Image Society.....................1 1.2 What Is a Digital Image?..................3 1.3 About Partial Di?erential Equations(PDEs).......5 1.4 Detailed Plan........................5 2 Mathematical Preliminaries 29 How to Read This Chapter....................29 2.1 The Direct Method in the Calculus of Variations.....30 2.1.1 Topologies on Banach Spaces...........30 2.1.2 Convexity and Lower Semicontinuity.......32 2.1.3 Relaxation......................37 2.1.4 AboutΓ-Convergence................40 2.2 The Space of Functions of Bounded Variation......42xx Contents 2.2.1 Basic Definitions on Measures...........43 2.2.2 Definition of BV(?)................45 2.2.3 Properties of BV(?)................46 2.2.4 Convex Functions of Measures...........50 2.3 Viscosity Solutions in PDEs................50 2.3.1 About the Eikonal Equation............50 2.3.2 Definition of Viscosity Solutions..........52 2.3.3 About the Existence................54 2.3.4 About the Uniqueness...............55 2.4 Elements of Di?erential Geometry:Curvature......57 2.4.1 Parametrized Curves................58 2.4.2 Curves as Isolevel of a Function u.........58 2.4.3 Images as Surfaces.................59 2.5 Other Classical Results Used in This Book........60 2.5.1 Inequalities.....................60 2.5.2 Calculus Facts....................62 2.5.3 About Convolution and Smoothing........62 2.5.4 Uniform Convergence................63 2.5.5 Dominated Convergence Theorem.........64 2.5.6 Well-Posed Problems................64 3 Image Restoration 65 How to Read This Chapter....................65 3.1 Image Degradation.....................66 3.2 The Energy Method.....................68 3.2.1 An Inverse Problem.................68 3.2.2 Regularization of the Problem...........69 3.2.3 Existence and Uniqueness of a Solution for the Minimization Problem.............72 3.2.4 Toward the Numerical Approximation......76 The Projection Approach..............76 The Half-Quadratic Minimization Approach...79 3.2.5 Some Invariances and the Role ofλ........87 3.2.6 Some Remarks on the Nonconvex Case......90 3.3 PDE-Based Methods....................94 3.3.1 Smoothing PDEs..................95 The Heat Equation.................95 Nonlinear Di?usion.................98 The Alvarez–Guichard–Lions–Morel Scale Space Theory.................107 Weickert’s Approach................113 Surface Based Approaches.............117 3.3.2 Smoothing–Enhancing PDEs............121 The Perona and Malik Model...........121Contents xxi Regularization of the Perona and Malik Model: Catt′e et al......................123 3.3.3 Enhancing PDEs..................128 The Osher and Rudin Shock Filters........128 A Case Study:Construction of a Solution by the Method of Characteristics...........130 Comments on the Shock-Filter Equation.....134 3.3.4 Neighborhood Filters,Nonlocal Means Algorithm, and PDEs......................137 Neighborhood Filters................138 How to Suppress the Staircase E?ect?......143 Nonlocal Means Filter(NL-Means)........146 4 The Segmentation Problem 149 How to Read This Chapter....................149 4.1 Definition and Objectives..................150 4.2 The Mumford and Shah Functional............153 4.2.1 A Minimization Problem..............153 4.2.2 The Mathematical Framework for the Existence of a Solution...............154 4.2.3 Regularity of the Edge Set.............162 4.2.4 Approximations of the Mumford and Shah Functional......................166 4.2.5 Experimental Results................171 4.3 Geodesic Active Contours and the Level-Set Method...173 4.3.1 The Kass–Witkin–Terzopoulos model.......173 4.3.2 The Geodesic Active Contours Model.......175 4.3.3 The Level-Set Method...............182 4.3.4 The Reinitialization Equation...........194 Characterization of the Distance Function....195 Existence and Uniqueness.............198 4.3.5 Experimental Results................206 4.3.6 About Some Recent Advances...........208 Global Stopping Criterion.............208 Toward More General Shape Representation...211 5 Other Challenging Applications 213 How to Read This Chapter....................213 5.1 Reinventing Some Image Parts by Inpainting.......215 5.1.1 Introduction.....................215 5.1.2 Variational Models.................216 The Masnou and Morel Approach.........216 The Ballester et al.Approach...........218 The Chan and Shen Total Variation Minimization Approach.................220xxii Contents 5.1.3 PDE-Based Approaches..............222 The Bertalmio et al.Approach...........223 The Chan and Shen Curvature-Driven Di?usion Approach.................224 5.1.4 Discussion......................225 5.2 Decomposing an Image into Geometry and Texture...228 5.2.1 Introduction.....................228 5.2.2 A Space for Modeling Oscillating Patterns....229 5.2.3 Meyer’s Model....................232 5.2.4 An Algorithm to Solve Meyer’s Model......233 Prior Numerical Contribution...........234 The Aujol et al.Approach.............234 Study of the Asymptotic Case...........241 Back to Meyer’s Model...............242 5.2.5 Experimental Results................245 Denoising Capabilities...............245 Dealing With Texture...............248 5.2.6 About Some Recent Advances...........248 5.3 Sequence Analysis......................249 5.3.1 Introduction.....................249 5.3.2 The Optical Flow:An Apparent Motion.....250 The Optical Flow Constraint(OFC).......252 Solving the Aperture Problem...........253 Overview of a Discontinuity-Preserving Variational Approach................256 Alternatives to the OFC..............260 5.3.3 Sequence Segmentation...............261 Introduction.....................261 A Variational Formulation.............264 Mathematical Study of the Time-Sampled Energy...............265 Experiments.....................269 5.3.4 Sequence Restoration................271 Principles of Video Inpainting...........276 Total Variation(TV)Minimization Approach..277 Motion Compensated(MC)Inpainting......277 5.4 Image Classification.....................281 5.4.1 Introduction.....................281 5.4.2 A Level-Set Approach for Image Classification.................282 5.4.3 A Variational Model for Image Classification and Restoration.....................290 5.5 Vector-Valued Images....................299 5.5.1 Introduction.....................299 5.5.2 An Extended Notion of Gradient.........300Contents xxiii 5.5.3 The Energy Method................300 5.5.4 PDE-Based Methods................302 A Introduction to Finite Di?erence Methods 307 How to Read This Chapter....................307 A.1 Definitions and Theoretical Considerations Illustrated by the 1-D Parabolic Heat Equation............308 A.1.1 Getting Started...................308 A.1.2 Convergence.....................311 A.1.3 The Lax Theorem..................313 A.1.4 Consistency.....................313 A.1.5 Stability.......................315 A.2 Hyperbolic Equations....................320 A.3 Di?erence Schemes in Image Analysis...........329 A.3.1 Getting Started...................329 A.3.2 Image Restoration by Energy Minimization...333 A.3.3 Image Enhancement by the Osher and Rudin Shock Filters....................336 A.3.4 Curve Evolution with the Level-Set Method...338 Mean Curvature Motion..............339 Constant Speed Evolution.............340 The Pure Advection Equation...........341 Image Segmentation by the Geodesic Active Contour Model...............342 B Experiment Yourself!343 How to Read This Chapter....................343 B.1 The CImg Library......................344 B.2 What Is Available Online?.................344 References 349 Index 373

2010-06-25

OpenCV1.0安装文件

在VC6下配置OpenCV1.0文档。 http://www.opencv.org.cn/index.php/VC6%E4%B8%8B%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AEOpenCV1.0

2010-06-25

表达式求值C++代码

表达式求值C++代码,我测试过,挺好用。遇到类似问题,可以参考一下。

2010-06-13

支持基本RichText编辑功能的消息应用程序附件

注意:这个资源是中兴捧月的一题,我保存下来自己看的,网上可以找到,大家就不要下载了吧 请基于高通BREW SDK及模拟器开发包,为类似手机设备这样的小型终端,设计一个支持基本的RichText编辑功能的类似短消息的brew应用程序。 初赛要求: 1、 该应用第一阶段至少支持消息内容的编辑功能,消息的保存和阅读、删除功能。在编辑界面的任意位置可以实现字符,动画,图片,铃音的插入和删除功能。如下图: 2、 界面一级菜单至少包含:新建消息,草稿箱,帮助 3、 实现一个编辑功能BREW接口控件,至少支持以下要求: (1)编辑内容时能输入文本,并能设置文本的字体大小(大字体、小字体两种) (2)编辑内容时能能插入图片,图片格式为BMP文件,32x32像素,256色 (3)编辑内容时能插入动画,动画格式为4幅(2)要求BMP的图片,当光标移动到动画位置时,能播放动画,当光标移开时,停止播放 (4)编辑内容时能插入铃音,铃音格式为标准MIDI文件,大小32k以内,当光标移动到铃音位置时能够播放铃音,当光标移开时,停止播放 4、 能将编辑的内容保存到一个草稿箱消息文件,该文件格式可以自己定义,但要保证文本、图片、声音的数据保存完整 5、 支持草稿箱阅读保存的内容。所有输入内容能正常显示、播放 6、 支持草稿箱删除消息功能 实现技术提示信息: BREW SDK 模拟器可以在windows操作系统平台直接运行,可以结合visual studio 6.0 IDE 环境方便代码工程管理和代码调试。BREW应用开发语言为C语言。 BREW SDK已经提供了接口,支持了BMP图片显示及MIDI文件的播放。 参考资料信息: 可从https://brewx.qualcomm.com/brew/sdk/download.jsp,高通公司的官方网站下载安装。进入网站下载页面后,用自己的电子邮箱地址注册帐号,即可下载BREW SDK。 BREW SDK中已携带参考文档: 1) 《BREWSDKUserDocs.chm》 2) 《BREWAPIReference.chm》 3) 《BREWSDKUserDocs.chm》 3GPP TS 23.040 V530文档(请见附件): www.3GPP.org,也可在网上找到该文档的其他版本 审核标准: 1、 设计文档是否有效解决了题目问题,是否清晰反映了设计者的设计思路,文档结构组织是否合理 2、 参赛程序对题目所要求功能的实现程度 3、 参赛作品是否具有很好的可读性和运行效率,资源占用情况是否合适

2010-06-09

南京理工大学计算机学院复试上机编程题目

南京理工大学计算机学院复试上机编程题目,需要的可以看看。不过这是前几年的。

2010-05-28

南京理工大学数据库系统

南京理工大学数据库系统课件和部分练习题,考研的同学可以参考一下。

2010-05-28

南京理工大学数据结构

南京理工大学数据结构,考研的同学可以参考一下。

2010-05-28

南京理工软件工程讲稿

南京理工软件工程讲稿,考研的可以参考一下。

2010-05-28

南京理工大学操作系统课件

南京理工大学 操作系统 课件,考研的同学可以下载参考。

2010-05-28

南京理工大学计算机网络课件

南京理工大学计算机网络课件, computer networking,考研的同学可以参考。

2010-05-28

数学建模个人经验谈共九个部分

包括:组队和分工,选题,文献资料查找,论文写作,培训,实践,如何写好数学建模论文和一些个人心得。 不是我写的。 大家备战数模的可以参考一下。 我在本科阶段没有参加过数学建模,因为有一种畏惧感,觉得那是数学学得很好的人才能做得来的。研究生阶段第一次抱着试一试的心态参加了第六届研究生数模,个人感觉没有想象中的那么难,而且所解决的问题很有挑战性也比较有价值,最终拿了个三等奖。 研究生建模竞赛的好处是:自己组队,没有指导老师,不会有为了学校获奖老师给学生出方案的情况(可能也会有,不过是不被允许的),更客观。 总的来讲,数学建模是体现一个人综合解决问题能力的一个平台,研究生数学建模竞赛更是有很多科研的成分,很有挑战性。

2010-05-19

2010成都信息工程学院研究生数模赛题

投票倾向问题 2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题

2010-05-19

weka使用教程中文版

目录 1. 简介2. 数据格式3.数据准备4. 关联规则(购物篮分析)5. 分类与回归6. 聚类分析

2010-05-19

实对称矩阵对角化含Matlab代码

实对称矩阵,对角化,有两篇论文,内含Matlab实现代码,在文章里的,可以直接写下来使用。测试过,还可以。

2010-05-19

经过裁剪预处理的面部表情识别研究用JAFFE数据库

网上JAFFE数据库几乎都是原始数据库,未经人脸裁剪/人脸剪切的,这个数据库是经过预处理的,已经将人脸利于面部表情识别的部分剪切出来,并存成64*82大小图像(详细裁剪算法请参考张一鸣,《面部表情识别》,该裁剪程序可在我的另一个资源里找到),按照类别分成7组,并详细标明各组所属表情分类,可直接用于面部表情识别实验。

2010-05-12

人脸面部表情识别日本jaffe数据库

人脸表情识别日本jaffe数据库,是表情识别领域应用最为广发的一个数据库之一,总共包含7种表情。

2010-05-12

人脸表情识别论文人脸预处理人脸检测裁剪特征提取模式分类

是篇硕士论文,详细介绍了人脸表情识别的预处理,特征提取,分类识别和系统设计各个阶段,是表情识别入门读物。

2010-05-12

人脸表情识别预处理人脸裁剪系统Face Cropping人脸裁切

该程序是为人脸表情识别研究实验人脸预处理阶段而开发的半自动人脸裁剪系统,因为大部分人脸表情数据库都是未经裁剪/裁切的,而去除背景是人脸表情识别预处理的重要一步。网上有很多人脸数据库,但大部分是未经裁剪/人脸裁切处理的,不能直接用于人脸表情识别试验。 该程序是为人脸表情识别研究实验人脸预处理阶段而开发的半自动人脸裁剪/人脸裁切系统,因为大部分人脸数据库都是未经裁剪的,而去除背景是人脸表情识别预处理的重要一步。 图像归一化为64*82大小,归一化方案请参见张一鸣,《人脸表情识别》。采用OpenCV+MFC制作,不提供源代码。用到的同学可以下载。 敬告:因为本程序读取.tif格式图像使用OpenCV函数,而.tif格式本身的复杂性导致没有通用的读取函数,故对有些.tif图像可能会出问题。

2010-05-12

人脸识别预处理人脸裁剪系统Face Cropping人脸裁切

网上有很多人脸数据库,但大部分是未经裁剪处理的,不能直接用于人脸识别试验。而整个网络也几乎找不到人脸裁剪/人脸裁切的工具,广大初入人脸识别研究领域的人不知如何入手。 该程序是为人脸识别研究实验人脸预处理阶段而开发的半自动人脸裁剪/人脸裁切系统,因为大部分人脸数据库都是未经裁剪/裁切的,而去除背景是人脸识别预处理的重要一步。 采用OpenCV+MFC制作,不提供源代码。用到的同学可以下载。 敬告:因为本程序读取.tif格式图像使用OpenCV函数,而.tif格式本身的复杂性导致没有通用的读取函数,故对有些特殊格式的.tif图像可能会出问题。

2010-05-12

kMeansCluster k均值聚类算法Matlab代码实现

kMeansCluster k均值聚类算法Matlab代码实现,聚类里的经典算法。可以参考应用。

2010-05-09

实对称矩阵相似对角化Matlab程序

实对称矩阵相似对角化Matlab程序,用到的朋友可以下载看看。

2010-05-07

人脸识别研究用ORL数据库

人脸识别 ORL数据库 图像和.mat数据 不需裁剪和预处理可直接用于实验。

2010-05-06

经过裁剪预处理的人脸识别研究用FERET数据库

经过裁剪预处理的人脸识别研究用FERET数据库(美国军方数据库),共有200个人,每个人7幅图像,包括图像和.mat数据,可以直接用于人脸识别实验。

2010-05-06

谁能详细介绍下判别模型和生成模型?

发表于 2011-11-23 最后回复 2011-11-23

空空如也
提示
确定要删除当前文章?
取消 删除