- 博客(450)
- 资源 (10)
- 收藏
- 关注
原创 百题突击11:1,请简述SVM 原理 2,SVM 为什么采用间隔最大化 3,SVM 为什么要引入 核函数 4,SVM 核函数之间的区别 5,为什么SVM对缺失数据敏感
1,请简述SVM 原理2,SVM 为什么采用间隔最大化3,SVM 为什么要引入 核函数4,SVM 核函数之间的区别5,为什么SVM对缺失数据敏感Self-attention对比RNN和CNN在处理NLP任务时分别有哪些优势...
2021-04-22 18:13:32
830
原创 百题突击10:1,简述kmeans流程 2,kmeans对异常值是否敏感?为何? 3,如何评估聚类效果 4,超参数k如何选择? 5,kmeans算法的优缺点
1,简述kmeans流程随机初始化k个中心点;计算所有样本到中心点的距离;比较每个样本到k个中心点的距离,将样本分类到距离最近的类别中;k个类别组成的样本点重新计算中心点(如在每一个方向上计算均值);重复2-4,直到中心点不再变化。2,kmeans对异常值是否敏感?为何?K-Means算法对初始选取的聚类中心点是敏感的,不同的随机种子点得到的聚类结果完全不同K-Means算法并不是适用所有的样本类型。它不能处理非球形簇、不同尺寸和不同密度的簇。K-Means算法对离群点的数据进行聚类时,K
2021-04-22 16:37:18
5175
2
原创 百题突击9:1,简述XGBoost。 2,XGBoost和GBDT有什么不同? 3,XGBoost为什么可以并行训练? 4,XGBoost防止过拟合的方法? 5,XGboost为什么这么快?
1,简述XGBoost。2,XGBoost和GBDT有什么不同?3,XGBoost为什么可以并行训练?4,XGBoost防止过拟合的方法?5,XGboost为什么这么快?6,附加题(私聊老师)CV: GRU 和 LSTM 的区别Transformer 中的 encoder 和 decoder 的异同点...
2021-04-22 16:25:32
703
原创 百题突击8:1,简述GBDT原理。 2,GBDT常用损失函数有哪些? 3,GBDT如何用于分类? 4,为什么GBDT不适合使用高维稀疏特征? 5,GBDT算法的优缺点?
1,简述GBDT原理。2,GBDT常用损失函数有哪些?3,GBDT如何用于分类?4,为什么GBDT不适合使用高维稀疏特征?5,GBDT算法的优缺点?附加题:CV:
2021-04-22 16:19:26
654
原创 百题突击12:1,SVM算法的优缺点 2,SVM的超参数C如何调节 3,SVM的核函数如何选择 4,简述SVM硬间隔推导过程 5,简述SVM软间隔推导过程
1,SVM算法的优缺点优点可以解决高维问题,即大型特征空间;解决小样本下机器学习问题;能够处理非线性特征的相互作用;无局部极小值问题;(相对于神经网络等算法)无需依赖整个数据;泛化能力比较强;缺点当观测样本很多时,效率并不是很高;对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;对于核函数的高维映射解释力不强,尤其是径向基函数;常规SVM只支持二分类;对缺失数据敏感;2,SVM的超参数C如何调节C 类似于lamda, 不过相反,C越大,越能得到稀疏的模型。3,SV
2021-04-22 15:56:41
1560
原创 K40自动重启/自动关机/时间系统混乱
接上一篇文章:K40自动重启的分析(RTC)今天早上再次异常自动关机,醒来打不开手机,一看关机了,赶紧开机,看到时间瞬间抓瞎:今天是4月21号,自动关机竟然回到了4月3号凌晨? 黑人问号?遂打电话给小米客服,要求换机!我会在这个博客里面更新后续。在15天内的,大家有问题的手机一定要去换好的。...
2021-04-21 09:24:51
3402
原创 K40自动重启的分析(RTC)
还没有毕业,等着论文送审期间之前老手机坏掉了,屏幕花了。现在又没有收入,红米K40就像一束光照向我的黑暗人生。抢了几次都没有在平台上抢购到。。。但是经过网友指点,去了小米之家,终于预定到了。三天之后到货,拿到手真的是觉得太幸运了。艰难生活中总要有点色彩呀。但是好不容易买到的K40也给我带来了烦恼。他一直无故异常重启呀。。。。瞬间又不爱了。。。。我附上我的系统日志:14号当天拿到,在小米之家让小哥哥帮忙开机的,一切正常:我怀疑,这个RTC可能是有问题。查了一下资料,发现不简单呀。所谓RTC(R
2021-04-18 13:22:15
13109
3
原创 百题突击7:1,简述一下随机森林算法的原理 2,随机森林的随机性体现在哪里? 3,随机森林算法的优缺点? 4,随机森林为什么不能用全样本去训练m棵决策树? 5,随机森林和GBDT的区别?
文章目录1,简述一下随机森林算法的原理2,随机森林的随机性体现在哪里?3,随机森林算法的优缺点?4,随机森林为什么不能用全样本去训练m棵决策树?5,随机森林和GBDT的区别?1,简述一下随机森林算法的原理2,随机森林的随机性体现在哪里?3,随机森林算法的优缺点?4,随机森林为什么不能用全样本去训练m棵决策树?5,随机森林和GBDT的区别?...
2021-04-15 12:43:56
1283
原创 百题突击6:1,什么是集成学习算法? 2,集成学习主要有哪几种框架, 并简述它们的工作过程? 3,Boosting算法有哪两类,它们之间的区别是什么? 4,什么是偏差和方差?Bagging可以减少弱分
文章目录1,什么是集成学习算法?2,集成学习主要有哪几种框架, 并简述它们的工作过程?3,Boosting算法有哪两类,它们之间的区别是什么?4,什么是偏差和方差?5,为什么说Bagging可以减少弱分类器的方差,而Boosting 可以减少弱分类器的偏差?1,什么是集成学习算法?2,集成学习主要有哪几种框架, 并简述它们的工作过程?3,Boosting算法有哪两类,它们之间的区别是什么?4,什么是偏差和方差?5,为什么说Bagging可以减少弱分类器的方差,而Boosting 可
2021-04-15 12:41:42
1065
原创 百题突击5:1,简述决策树的构建过程 2,D3决策树与C4.5决策树的区别 3,CART回归树构建过程 4,决策树的优缺点
文章目录1,简述决策树的构建过程2,D3决策树与C4.5决策树的区别3,CART回归树构建过程4,决策树的优缺点5. 决策树如何防止过拟合?说说具体方法1,简述决策树的构建过程机器学习 | 决策树的生成过程是怎样?(一)http://www.woshipm.com/ai/1083031.html步骤一:将所有的特征看成一个一个的节点,eg(拥有房产、婚姻状态、年收入这些特征,我们可以看成一个一个的节点。)步骤二:遍历当前特征的每一种分割方式,找到最好的分割点eg(婚姻状态这个特征,我们可以按照单身
2021-04-13 16:43:23
1082
原创 解决GitHub访问缓慢
https://www.eet-china.com/mp/a45791.htmlGitHub 镜像访问https://hub.fastgit.org也就是说上面的镜像就是一个克隆版的 GitHub,你可以访问上面的镜像网站,网站的内容跟 GitHub 是完整同步的镜像,然后在这个网站里面进行下载克隆等操作。...
2021-04-12 23:06:21
472
原创 百题突击4:1.逻辑回归相比线性回归,有何异同? 2.回1.写出全概率公式&贝叶斯公式 2.朴素贝叶斯为什么“朴素naive”? 3.朴素贝叶斯有没有超参数可以调? 4.朴素贝叶斯的工作流程是怎样的?
文章目录1.写出全概率公式&贝叶斯公式2.朴素贝叶斯为什么“朴素naive”?3.朴素贝叶斯有没有超参数可以调?4.朴素贝叶斯的工作流程是怎样的?5.朴素贝叶斯对异常值是否敏感?1.写出全概率公式&贝叶斯公式https://zhuanlan.zhihu.com/p/78297343https://www.jianshu.com/p/3ff548a8b3a3如果事件组B1,B2,… 满足1) B1,B2…两两互斥,即 Bi ∩ Bj = ∅ ,i≠j , i,j=1,2,…,且P(B
2021-04-12 15:37:17
1368
原创 SVM 决策边界为什么theta和回归方程垂直?
看了Andrew的课,这一块很多人不懂,但是使用一个简单的例子既可以理解,假设x2=-x1,也就是x1+x2=0,那么θ1=1,θ2=1\theta_1=1,\theta_2 = 1θ1=1,θ2=1, 所以就是垂直了,如下图右上角。Charles@SZ
2021-04-10 10:39:00
983
原创 百题突击3:1.逻辑回归相比线性回归,有何异同? 2.回归问题常用的性能度量指标 3.分类问题常用的性能度量指标 4.逻辑回归的损失函数
文章目录1.逻辑回归相比线性回归,有何异同?2.回归问题常用的性能度量指标3.分类问题常用的性能度量指标4.逻辑回归的损失函数1.逻辑回归相比线性回归,有何异同?许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多。从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类。在线性回归模型中,输出一般是连续的,例如y=f(x)=ax+by=f(x)=ax+by=f(x)=ax+b对于每一个输入的x,都有一个对应的y输出。模型的定义域和值域都可以是[-∞, +∞]。但是对于
2021-04-09 08:40:57
1232
原创 百题突击2:1.在模型评估过程中,过拟合和欠拟合具体指什么现象 2.降低过拟合和欠拟合的方法 3.L1和L2正则先验分别服从什么分布 4.对于树形结构为什么不需要归一化?
文章目录1.在模型评估过程中,过拟合和欠拟合具体指什么现象2.降低过拟合和欠拟合的方法3.L1和L2正则先验分别服从什么分布4.对于树形结构为什么不需要归一化?1.在模型评估过程中,过拟合和欠拟合具体指什么现象过拟合(overfitting)指的是模型在训练数据是表现非常好,但是在验证集上表现特别差。欠拟合(underfitting)指的是是模型在训练数据和验证集上表现都比较差。2.降低过拟合和欠拟合的方法降低过拟合的方法:减少特征的数量,你可以选择一下那些特征要使用,那些要丢弃,防止用太
2021-04-08 11:53:38
1179
原创 百题突击1:为什么要对特征做归一化/什么是组合特征/如何处理高维组合特征/欧式距离与曼哈顿距离/为什么一些场景中使用余弦相似度而不是欧式距离
为什么要对特征做归一化 ?特征间单位和尺度差异影响计算(涉及或隐含距离计算的算法的时候):拿Angrew Ng的课程的房屋价格预测举例,房子有很多属性,例如面积x1,多少房间x2,以及多少卫生间x3。 那么如果不归一化,进行距离有关的计算时,单位的不同会导致计算结果的不同,尺度大的特征会起决定性作用(x1),而尺度小的特征其作用可能会被忽略(x2,x3),为了消除特征间单位和尺度差异的影响,以对每维特征同等看待,需要对特征进行归一化。归一化有利于收敛(梯度下降算法角度):原始特征下,因尺度差.
2021-04-06 23:32:25
1531
2
原创 Coursera半价优惠
众所周知,Coursera是一个非常优秀的学习平台。根据这位大牛所说:我在纽约大学攻读计算机科学硕士的两年里,在 Coursera 平台上自学完成了 26 门课程,3 个专项系列(Specialization)证书,极大地提升了我在计算机科学领域的理论知识和编程能力。毫不夸张地说,在 Coursera 上学习到的知识和完成的软件项目很大程度上帮助我拿到并通过了北美顶尖科技公司的面试。Coursera 是一个非常棒的在线公开课程平台,无论你对理工科或者文科专业的某个领域感兴趣,都可以在这里学习到最前
2021-04-06 14:24:43
1394
1
原创 “活照片”突破人脸识别
来源 南-方-都-市-报该报记者检索裁判文书网发现,近年来,通过“捏造”或骗取人脸信息进行违法犯罪的案例,并不鲜见。与技术门槛高的安全攻防不同的是,被查的违法者手段并不高明。比如,在2018年,浙江、四川两地均有人采取将照片制作成3D人脸动态图的办法,破解了支付宝的人脸识别认证系统。而在广大农村地区,人们保护个人信息的意识还远远不够,有违法者就通过免费发放洗衣液、面、油等物品,骗取公民身份证及人脸信息,挪作他用。有受害者表示,被拍照时“我也不知道是干什么,他们让这么做,我们就那样做了。”用照片破解人
2021-04-02 09:06:09
3870
5
原创 [LeetCode ] 9. 回文数 谢谢你让我明白了我是个智障
很简单一道题呀。就很happy开始写啊,最朴素的算法:class Solution: def isPalindrome(self, x: int) -> bool: if x<0: return False # l=list(str(x)) # l = [] # while (x>0): # l.append(x%10) # x=x//10 .
2021-04-01 23:39:39
876
2
原创 [LeetCode ] 八皇后问题以及回溯法
对于回溯法,写 backtrack 函数时,需要维护走过的「路径」和当前可以做的「选择列表」,当触发「结束条件」时,将「路径」记入结果集:result=[]def backtrack(路径,选择列表): if 满足结束条件: result.append(路径) return for 选择 in 选择列表: 做出选择 递归执行backtrack 撤销选择八皇后问题class Solution:
2021-03-31 21:25:22
780
1
原创 [LeetCode ] Python-410. 分割数组的最大值
给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。注意:数组长度 n 满足以下条件:1 ≤ n ≤ 10001 ≤ m ≤ min(50, n)示例:输入:nums = [7,2,5,10,8]m = 2输出:18解释:一共有四种方法将nums分割为2个子数组。其中最好的方式是将其分为[7,2,5] 和 [10,8],因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。思路:按照七月
2021-03-30 10:19:28
780
原创 LeetCode:实现 int sqrt(int x) 函数
实现 int sqrt(int x) 函数。计算并返回 x 的平方根,其中 x 是非负整数。由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。示例 1:输入: 4输出: 2示例 2:输入: 8输出: 2说明: 8 的平方根是 2.82842…,由于返回类型是整数,小数部分将被舍去。class Solution: def guess(self,x,y): return x*x <= y def mySqrt(self, x: int) -&
2021-03-29 23:06:49
801
原创 [LeetCode]给你一个数组 nums,对于其中每个元素 nums[i],请你统计数组中比它小的所有数字的数目。
给你一个数组 nums,对于其中每个元素 nums[i],请你统计数组中比它小的所有数字的数目。换而言之,对于每个 nums[i] 你必须计算出有效的 j 的数量,其中 j 满足 j != i 且 nums[j] < nums[i] 。以数组形式返回答案。这个很简单:class Solution: def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]: num_small = [0 f
2021-03-29 20:28:12
1918
原创 [LeetCode] Rotate Function 旋转函数
很傻的方法:class Solution: def maxRotateFunction(self, nums: List[int]) -> int: maxt = -math.inf K = len(nums) for k in range(K): t = 0 for i in range(K): t = t + i*nums[i-k] .
2021-03-29 19:26:06
397
原创 一起学Tensorflow: 卷积/池化的直观感受
让机器去思考,这是一个多么让人激动的事情!加载一个scipy内置的图片,使用它来进行实验:import cv2import numpy as npfrom scipy import misci = misc.ascent()import matplotlib.pyplot as pltplt.grid(False)plt.gray()plt.axis('off')plt.imshow(i)plt.show()下面定义一个3x3的卷积核:i_transf...
2021-03-25 11:37:28
703
2
原创 一起学Tensorflow: 从简单的全连接到卷积的进化直观感受
让机器去思考,这是一个多么让人激动的事情!不适用CNNimport tensorflow as tfmnist = tf.keras.datasets.fashion_mnist(training_images, training_labels), (test_images, test_labels) = mnist.load_data()training_images=training_images / 255.0test_images=test_images / 25...
2021-03-25 11:26:35
636
原创 一起学Tensorflow:自己定义callback函数,并且在训练的时候,当准确度达到99%就停止
让机器去思考,这是一个多么让人激动的事情!以下代码展示了如何自己定义callback函数,并且在训练的时候,当准确度达到99%就停止:import tensorflow as tfclass myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('accuracy')>0.6): print("\nReached 6...
2021-03-25 09:39:26
1255
原创 一起学Tensorflow: TF常用内置数据集
让机器去思考,这是一个多么让人激动的事情!可以直接在TF中加载已经内置的数据集。一般而言,是一个28x28的数组,标签是一个数字。那么为什么标签不是一个描述性文字,而是数字呢?答案是: 为了避免bias,也就是偏差。...
2021-03-25 08:56:16
808
原创 一起学Tensorflow: 一个与众不同的hello word (1)
让机器去思考,这是一个多么让人激动的事情!来做一个简单的推理题目,给出如下的数据:X=−1,0,1,2,3,4X=-1,0,1,2,3,4X=−1,0,1,2,3,4Y=−3,−1,1,3,5,7Y=-3,-1,1,3,5,7Y=−3,−1,1,3,5,7那么X和Y之间有什么联系么?其实聪明的你早就看出来了,Y=2X-1.那么电脑可以看出来么,其实也是可以的,而且非常简单,一个简单的神经网络就可以,一个输入节点,一个输出节点,一个隐藏节点:我们来实现他,作为TF的hel...
2021-03-24 22:36:57
585
1
原创 反向传播算法
复合函数求导 链式法则若有两个一元函数 f(x)f(x)f(x) 和 g(x),g(x),g(x), 我们可以把 ggg 的函数值作为 fff 的自变量, 得到一个新的函数称为 f(x)f(x)f(x) 和 g(x)g(x)g(x) 的复合函数,记为 f[g(x)].f[g(x)] .f[g(x)].如果我们已知两个函数 f(x)f(x)f(x) 和 g(x)g(x)g(x) 的导函数 f′(x)f^{\prime}(x)f′(x) 和 g′(x)g^{\prime}(x)g′(x), 那么我们可以通过
2021-03-23 00:05:37
535
原创 Widgets are not available. Please install widgetsnbextension or ipywidgets 4.0
浏览器JS里面显示:Widgets are not available. Please install widgetsnbextension or ipywidgets 4.0# 方式一pip install ipywidgetsjupyter nbextension enable --py widgetsnbextension# 方式二conda install -c conda-forge ipywidgetsfastpbkdf2 0.2不能使用:E: Package ‘libff
2021-03-22 19:08:00
1263
原创 VT 2014 Happenings New students
下载链接:https://download.csdn.net/download/MrCharles/15943580
2021-03-19 23:04:25
866
1
原创 python实现matlab的nchoosek函数
def nchoosek(startnum, endnum, step=1, n=1): c = [] for i in itertools.combinations(range(startnum,endnum+1,step),n): c.append(list(i)) return ca = nchoosek(1, 3, step=1, n=2)print(a)[[1, 2], [1, 3], [2, 3]]
2021-03-19 13:33:07
1366
原创 小米路由器同一wifi局域网下,各主机无法ping连
使用的是小米路由器,死活ping不通同网的电脑:Pinging 192.168.31.26 with 32 bytes of data:Reply from 192.168.31.139: Destination host unreachable.Reply from 192.168.31.139: Destination host unreachable.Reply from 192.168.31.139: Destination host unreachable.Reply from 192.
2021-03-19 09:37:37
5523
4
MMdnn.pptx
2020-11-20
rtl8821ce-dkms_5.5.2.1-0ubuntu3_18.04.1_all.deb
2020-08-29
BecomingHumanCheatSheets.pdf
2019-12-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅