在两个排序数组中找到第K小的数

给定两个有序数组arr1和arr2,再给定一个整数k,返回所有的数中第k小的数。要求时间复杂度O(log(min{M,N})),额外空间复杂度O(1)。

【基本思路】

  在解决这道题之前,先解决一个小问题:在两个长度相等的排序数组中找到上中位数。本题也深度利用了这个问题的解法。以下的getUpMedian方法的功能就是,在a1[s1…e1]和a2[s2…e2]两段长度相等的范围上找上中位数。

 def getUpMedian(a1, s1, e1, a2, s2, e2):
        while s1 < e1:
            mid1 = (e1 + s1) // 2
            mid2 = (e2 + s2) // 2
            offset = (e1 - s1 + 1) & 1 ^ 1
            if arr1[mid1] == arr2[mid2]:
                return arr1[mid1]
            elif arr1[mid1] > arr2[mid2]:
                e1 = mid1
                s2 = mid2 + offset
            else:
                s1 = mid1 + offset
                e2 = mid2
        return min(arr1[s1], arr2[s2])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

  假设两个数组,长度较短的数组为shortArr,长度记为lenS;长度较长的数组为longArr,长度记为lenL。那么对于整数k,有以下三种情况: 
   
  1、k < lenS。那么在shortArr中选前k个数,在longArr中也选前k个数,这两段数组中的中位数就是整体的第k个最小。

  2、k > lenL。对于longArr中的前k-lenS-1个数,都不能满足要求,因为即使它们比shortArr中所有的数都大,也无法达到第k个。longArr中的第k-lenS个数,如果它比shortArr中的所有数都大,那么它就是第k小数,否则,它也不是。对于shortArr中的前k-lenL-1个数,都不能满足要求,因为即使它们比longArr中所有的数都大,也无法达到第k个。shortArr中的第k-lenL个数,如果它比longArr中的所有数都大,那么它就是第k小数,否则,它也不是。如果shortArr[k-lenL-1]和longArr[k-lenS-1]都不是第k小的数,那么shortArr[k-lenL…lenS-1]和longArr[k-LenS…lenL-1]这两段数组 的中位数就是整体的第k小数。

  3、lenS < k < lenL。对于longArr中的前k-lenS-1个数,都不能满足要求,因为即使它们比shortArr中所有的数都大,也无法达到第k个。longArr中的第k-lenS个数,如果它比shortArr中的所有数都大,那么它就是第k小数,否则,它也不是。对于longArr中的第k个数以后部分,也都不能满足要求。如果longArr[k-lenS-1]不是第k小数,那么shortArr[0…lenS-1]和longArr[k-lenS…lenL-1]这两段数组 的中位数就是整体的第k小数。

【代码实现】

#python3.5
def findKthNum(arr1, arr2, k):
    if arr1 == None or arr2 == None:
        raise Exception("Your arr is invalid!")
    if k < 1 or k > (len(arr1) + len(arr2)):
        raise Exception("K is invalid!")
    longs = arr1 if len(arr1) > len(arr2) else arr2
    shorts = arr1 if len(arr1) <= len(arr2) else arr2
    l = len(longs)
    s = len(shorts)
    if k <= s:
        return getUpMedian(shorts, 0, k-1, longs, 0, k-1)
    if k > l:
        if longs[k-s-1] >= shorts[-1]:
            return longs[k-s-1]
        if shorts[k-l-1] >= longs[-1]:
            return shorts[k-l-1]
        return getUpMedian(longs, k-s, l-1, shorts, k-l, s-1)
    if longs[k-s-1] >= shorts[-1]:
        return longs[k-s-1]
    print(222)
    return getUpMedian(longs, k-s, k-1, shorts, 0, s-1)
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
给定两个有序数组,假设数组 `nums1` 的长度为 `m`,数组 `nums2` 的长度为 `n`。为了方便起见,假设 `m ≤ n`。要求解这两个有序数组位数或第 `k` 小的元素,可以采用以下两种方法。 ## 方法一:归并排序 这种方法的思路很简单,就是将两个有序数组归并成一个有序数组,然后再根据数组长度和 k 的值确定位数或第 k 小的元素。具体步骤如下: 1. 定义两个指针 `p1` 和 `p2`,分别指向数组 `nums1` 和 `nums2` 的起始位置。 2. 定义一个新数组 `nums3`,用于存放归并后的有序数组。 3. 循环执行以下步骤,直到 `nums3` 有 `k` 个元素: 1. 比较 `nums1[p1]` 和 `nums2[p2]` 的大小,将较小的元素加入 `nums3` 。 2. 将指向较小元素的指针后移一位。 4. 如果 `m + n` 是奇数,则 `nums3[(m+n)/2]` 就是位数;否则 `nums3[(m+n)/2-1]` 和 `nums3[(m+n)/2]` 的平均值就是位数。如果要求第 k 小的元素,则返回 `nums3[k-1]`。 时间复杂度为 $O(m+n)$。 ## 方法二:二分查找 这种方法的思路比较巧妙,其核心思想是在两个有序数组找到第 k 小的元素,假设这个元素在数组 `nums1` 的位置是 `i`,在数组 `nums2` 的位置是 `j`。那么有以下两种情况: 1. 如果 `nums1[i] < nums2[j]`,则数组 `nums1[0...i]` 的所有元素都是第 k 小的元素的候选元素,因为这些元素都小于 `nums2[j]`,而 `nums2[0...j]` 的所有元素都不可能是第 k 小的元素,因为这些元素都小于 `nums1[i]`。 2. 如果 `nums1[i] >= nums2[j]`,则数组 `nums2[0...j]` 的所有元素都是第 k 小的元素的候选元素,因为这些元素都小于 `nums1[i]`,而 `nums1[0...i]` 的所有元素都不可能是第 k 小的元素,因为这些元素都小于 `nums2[j]`。 具体步骤如下: 1. 定义两个指针 `p1` 和 `p2`,分别指向数组 `nums1` 和 `nums2` 的起始位置。 2. 循环执行以下步骤,直到找到第 k 小的元素: 1. 如果 `p1 >= m`,说明数组 `nums1` 已经没有元素可以参与比较,直接返回 `nums2[p2+k-1]`。 2. 如果 `p2 >= n`,说明数组 `nums2` 已经没有元素可以参与比较,直接返回 `nums1[p1+k-1]`。 3. 如果 `k == 1`,直接返回 `min(nums1[p1], nums2[p2])`。 4. 比较 `nums1[p1+k/2-1]` 和 `nums2[p2+k/2-1]` 的大小,如果前者小于等于后者,则说明 `nums1[0...k/2-1]` 的所有元素都小于等于第 k 小的元素,可以把这些元素全部排除掉,更新 `k` 的值为原来的一半,并将指向 `nums1` 的指针后移 `k/2` 个位置;否则说明 `nums2[0...k/2-1]` 的所有元素都小于等于第 k 小的元素,可以把这些元素全部排除掉,更新 `k` 的值为原来的一半,并将指向 `nums2` 的指针后移 `k/2` 个位置。 3. 如果要求位数,则返回第 `(m+n)/2` 小的元素和第 `(m+n)/2+1` 小的元素的平均值;如果要求第 k 小的元素,则返回第 k 小的元素。 时间复杂度为 $O(\log(m+n))$。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值