Dify生成报表的详细步骤与源码解析

部署运行你感兴趣的模型镜像

一、整体流程步骤
1. 环境准备
   安装依赖(参考引用[2]):
   ```bash
   # 安装PostgreSQL
   sudo apt-get install postgresql
   # 修改配置文件
   vim /etc/postgresql/16/main/postgresql.conf
   ```

2. 创建报表生成应用
   在Dify控制台创建空白应用,类型选择文本生成或Agent模式。

3. Agent核心编排
   - 提示词工程:  
     在`prompt`中定义报表结构,例如:
     ```python
     "你是一个报表生成Agent,按以下步骤工作:
      1. 从${database_tool}获取${date_range}的销售数据
      2. 计算总销售额、同比增长率
      3. 输出Markdown表格:
         | 指标       | 值       |
         |------------|----------|
         | 总销售额   | ${total} |
         | 同比增长   | ${rate}% |"
     ```
   - 工具集成:  
     添加数据库查询工具(如SQL执行器)或API连接器。

4. 变量设置
   定义动态参数:
   ```json
   {
     "date_range": "2024-Q2",
     "metrics": ["sales", "profit"]
   }
   ```

5. 测试与发布
   通过测试界面验证输出,发布为API接口供系统调用。

二、关键源码解析
Dify生成报表的核心源码位于以下路径([GitHub仓库](https://github.com/langgenius/dify)):

1. Agent执行引擎
   `api/core/agent/agent_runner.py`
   ```python
   def run_agent(prompt: str, tools: list, variables: dict):
       # 1. 解析提示词中的工具调用指令
       tool_calls = parse_tool_calls(prompt)  
       
       # 2. 动态执行工具链(如数据库查询)
       tool_results = execute_tools(tool_calls, variables)  
       
       # 3. 注入结果到LLM生成阶段
       final_prompt = inject_results(prompt, tool_results)  
       
       # 4. 调用LLM生成结构化报表
       report = llm_generate(final_prompt)  
       return format_report(report)  # 转换为Markdown/HTML
   ```

2. 工具集成层
   `api/core/tools/`目录下的工具实现类:
   ```python
   # SQL执行器示例 (tools/sql_tool.py)
   class SQLTool:
       def execute(self, query: str, conn_params: dict):
           with psycopg2.connect(**conn_params) as conn:
               cursor = conn.cursor()
               cursor.execute(query)
               return cursor.fetchall()  # 返回数据集
   ```

3. 输出格式化
   `api/utils/report_formatter.py`的转换逻辑:
   ```python
   def markdown_formatter(data: dict):
       table = "| 指标 | 值 |\n|------|----|\n"
       for k, v in data.items():
           table += f"| {k} | {v} |\n"
       return table
   ```

三、执行流程示意图
```mermaid
graph TD
    A[用户请求] --> B{Agent引擎}
    B --> C[解析工具调用]
    C --> D[执行数据库查询]
    D --> E[获取原始数据]
    E --> F[LLM分析计算]
    F --> G[生成结构化报表]
    G --> H[格式转换]
    H --> I[返回Markdown/HTML]
```

> 技术原理:Dify通过将工具调用、变量注入和LLM生成封装成标准化Pipeline,使开发者无需编写底层代码即可构建报表生成应用。

您可能感兴趣的与本文相关的镜像

LangFlow

LangFlow

AI应用
Agent编排

LangFlow 是一款低代码、可视化的 AI 应用构建工具,用于快速搭建和实验 LangChain 流水线

### 如何使用 Dify 生成报表 Dify 是一种用于快速构建应用的框架或工具集,尽管具体的实现方式可能因版本不同而有所差异。以下是关于如何利用 Dify生成报表的一些指导。 #### 工具准备环境配置 为了成功运行并生成报表,需先完成必要的开发环境搭建以及依赖项安装。通常情况下,这涉及 Python 或其他支持语言的基础库设置[^2]。例如: ```bash pip install dify ``` 如果目标是处理复杂的文档(如 PDF、Excel),则可以引入额外的支持模块来增强功能,比如 `pandas` 和 `openpyxl` 处理 Excel 文件,或者 `PyPDF2` 解析 PDF 文档。 #### 数据源接入 在创建报表之前,需要定义数据来源。假设我们有一个 CSV 文件作为基础数据输入,则可以通过 Pandas 加载该文件,并将其转换成适合展示的形式。 ```python import pandas as pd data = pd.read_csv('example.csv') summary_table = data.groupby(['Category']).sum() print(summary_table) ``` 此部分操作会依据实际需求调整逻辑,确保最终输出满足业务分析的要求[^3]。 #### 报表模板设计 借助 Jinja2 等模板引擎技术,可灵活定制 HTML/CSS 布局样式,从而形成美观易读的结果页面。下面是一个简单的例子演示如何渲染汇总信息到网页上: ```jinja <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Report</title> </head> <body> <h1>Sales Summary Report</h1> <table border="1"> {% for index, row in summary_table.iterrows() %} <tr><td>{{index}}</td>{%for value in row %}<td>{{value}}</td>{% endfor %}</tr> {% endfor %} </table> </body> </html> ``` 随后调用相应函数将上述内容写入静态文件中保存下来供查看[^4]。 #### 自动生成流程集成 最后一步就是把前面提到的所有环节串联起来自动化执行下去。这样每当有新的原始资料进来时就能自动触发整个链条直至产出最新的报告成品为止。 ```python from jinja2 import Environment, FileSystemLoader env = Environment(loader=FileSystemLoader('.')) template = env.get_template('report_template.html') with open("output_report.html", "w") as f: rendered_content = template.render({'summary_table': summary_table}) f.write(rendered_content) ``` 以上即为通过 Dify 架构体系下的一套基本方法论介绍[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值