mslion
码龄97天
关注
提问 私信
  • 博客:16,311
    16,311
    总访问量
  • 11
    原创
  • 53,539
    排名
  • 261
    粉丝
  • 2
    铁粉
  • 学习成就

个人简介:编辑一枚,学术咨询或期刊发表指导,拯救卫星:moshushi0228 专业编辑助您匹配期刊!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2024-08-08
博客简介:

mslion的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    107
    当月
    26
个人成就
  • 获得271次点赞
  • 内容获得0次评论
  • 获得220次收藏
创作历程
  • 11篇
    2024年
成就勋章
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

整理:4篇论文让你了解Mamba模型的突破,动态视觉状态空间块在多模式学习中的创新应用

与类似大小的 Transformer 相比,我们的 Mamba 语言模型的生成吞吐量是其 5 倍,Mamba-3B 的质量与两倍大小的 Transformer 相当(例如,与 Pythia-3B 相比,常识推理平均高出 4 分,甚至超过 Pythia-7B )。(1)我们提出了VL-Mamba,这是第一个探索和利用状态空间模型来解决多模态学习任务的工作,它为除基于变压器的架构之外的多模态大语言模型提供了一种新颖的框架选项。实验表明,与现有的多模态大语言模型相比,VL-Mamba 实现了具有竞争力的性能。
原创
发布博客 2024.11.04 ·
835 阅读 ·
29 点赞 ·
0 评论 ·
8 收藏

整理:4篇论文让你了解多种股票趋势预测的新策略

我们整理了部分最新股票趋势预测任务研究论文,这些论文深入探索了市场特征挖掘的创新方法,提出了多种股票趋势预测的新策略。
原创
发布博客 2024.11.01 ·
693 阅读 ·
32 点赞 ·
0 评论 ·
20 收藏

整理:4篇论文让你了解Diffusion模型在时间序列预测的最新应用

Diffusion模型的灵活性使其适合于与其他深度学习技术结合,进一步提升预测的准确性和鲁棒性。以下将介绍四篇应用Diffusion模型于时间序列预测的相关论文,展示这些模型如何为解决实际问题提供新的视角和方法,以及它们在各自领域中的创新应用。
原创
发布博客 2024.10.23 ·
1049 阅读 ·
24 点赞 ·
0 评论 ·
8 收藏

整理:四种基于SAM图像处理的技术点改进

然而,源域与目标域之间的域差距常常导致模型性能下降,因此,解决域适应问题成为提高模型泛化能力的关键。桥接将掩模解码器的特定领域特征映射到图像编码器,促进两个组件的协同适应,仅与少量目标样本互惠互利,最终在各种下游任务中实现卓越的分割。此外,我们将 PointSAM 的应用扩展到面向点监督的对象检测任务中的边界框生成,展示了其多功能性以及在基于点的监督学习场景中更广泛使用的潜力。(1)弱监督适应方法:文章提出了一种新的弱监督适应框架,该框架能够在仅使用少量标注数据的情况下,提升模型在目标领域的表现。
原创
发布博客 2024.10.18 ·
1020 阅读 ·
19 点赞 ·
0 评论 ·
8 收藏

整理:4篇论文让你了解提升跨域任务的策略

我们整理了2024年顶级学术会议中的部分最新跨域任务研究论文,这些论文深入探索了特征对齐的创新方法,提出了多种提升跨域任务性能的策略。
原创
发布博客 2024.10.14 ·
774 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏

整理:4篇论文让你了解基于 Transformer 的时间序列预测的最新成果

为了解决这些问题,我们设计了一种高效的基于Transformer的LSTF模型,命名为Informer,具有以下三个显著特征:(i)一种ProbSparse自注意力机制,它在时间复杂度和内存使用上实现了O(Llog L),并且在序列依赖对齐方面具有可比的性能;它采用了全局自注意力机制,能够有效捕捉输入序列中的长距离依赖关系,与传统的循环神经网络(RNN)相比,Transformer 在并行计算和处理长序列数据方面具有显著优势,这使得 Transformer 成为各种序列建模任务中的首选架构之一。
原创
发布博客 2024.10.09 ·
1414 阅读 ·
19 点赞 ·
0 评论 ·
14 收藏

整理:基于CLIP的文本特征对齐在语义分割中的应用与挑战

为此,通过最小的修改,我们表明,在没有符号和微调的情况下,MaskCLIP 在跨各种数据集的开放概念上产生了令人信服的分割结果。(3)在四个流行的数据集上,我们的方法比最先进的无监督和语言驱动的语义分割方法获得了一致和实质性的收益。(4)实验结果:通过实验验证,该方法在多个视觉任务(如语义分割等)上取得了良好的性能,证明了从 CLIP 模型中提取的无监督密集标签的有效性。(3)视觉-语言对齐:利用 CLIP 模型的视觉-语言对齐特性,该方法可以通过选择合适的文本描述,来指导模型生成图像的密集标签。
原创
发布博客 2024.10.08 ·
910 阅读 ·
16 点赞 ·
0 评论 ·
8 收藏

整理:4篇论文让你弄清楚CLIP在计算机视觉领域最新应用

我们整理了有关 CLIP 在计算机视觉领域最新应用的论文,这些研究深入探讨了 CLIP 的优化方向及其在语义分割中的具体应用。
原创
发布博客 2024.09.02 ·
2192 阅读 ·
25 点赞 ·
0 评论 ·
40 收藏

整理:4种新的语言引导的语义分割框架,帮你解决像素-文本对齐带来的问题!

然而,这种方法也面临一些挑战。(5) 零样本学习的增强CLIP展示了卓越的零样本学习能力,在不需要特定于数据集的训练数据的情况下,能够在多个任务中与传统的完全监督模型竞争,并且表现出更强的稳健性。(2) CLIP模型的提出开发了一种名为CLIP(对比语言图像预训练)的新模型,简化并扩展了之前的ConVIRT模型,从头开始在大规模图像和文本对上进行训练。(3) 大规模训练的影响,在大规模图像和文本数据集上进行训练,CLIP实现了更高效的学习,能够在更少的计算资源下,超越当前最佳的ImageNet模型。
原创
发布博客 2024.08.30 ·
1164 阅读 ·
16 点赞 ·
0 评论 ·
11 收藏

整理:4篇论文告诉你KAN网络在不同领域的应用(如时间序列分析、图学习任务和卷积神经网络的改进)

我们整理了有关 KAN 在上述领域最新应用的论文,这些研究深入探讨了KAN在人工智能应用中的广泛适用性和强大的性能。
原创
发布博客 2024.08.27 ·
4207 阅读 ·
33 点赞 ·
0 评论 ·
63 收藏

整理:4篇在时序预测中成功应用改进注意力机制的研究论文

为进一步提升模型的准确性,FedDA 引入了一种双重注意机制,在构建全局模型时,不仅聚合集群内的模型,还考虑集群间的模型,避免了简单平均局部模型权重的不足。为了进一步增强模型的预测能力,在编码器和解码器之间引入了一个变换注意层,该层用于将编码后的交通特征转换为未来时间步的序列表示,并作为解码器的输入。(1)为了对道路网络图中不同顶点的交通状况的(空间)相关性进行建模,我们提出了一种基于 GCN 的模型,名为 LPGCN,该模型学习过渡矩阵来编码顶点之间的潜在交通模式相关性。
原创
发布博客 2024.08.26 ·
1083 阅读 ·
18 点赞 ·
0 评论 ·
17 收藏