
整理:4篇论文让你了解Mamba模型的突破,动态视觉状态空间块在多模式学习中的创新应用
与类似大小的 Transformer 相比,我们的 Mamba 语言模型的生成吞吐量是其 5 倍,Mamba-3B 的质量与两倍大小的 Transformer 相当(例如,与 Pythia-3B 相比,常识推理平均高出 4 分,甚至超过 Pythia-7B )。(1)我们提出了VL-Mamba,这是第一个探索和利用状态空间模型来解决多模态学习任务的工作,它为除基于变压器的架构之外的多模态大语言模型提供了一种新颖的框架选项。实验表明,与现有的多模态大语言模型相比,VL-Mamba 实现了具有竞争力的性能。















