Spring Cloud Alibaba AI 入门与探索
概述
Spring AI 是 Spring官方社区项目,旨在简化 Java AI应用程序开发,让Java开发者像使用Spring开发普通应用一样开发AI应用。
Spring Cloud Alibaba AI是一个将Spring Cloud微服务生态与阿里巴巴AI能力无缝集成的框架,帮助开发者快速构建具备AI功能的现代应用。本文将介绍Spring Cloud Alibaba AI的基本概念、主要特性和功能,并演示如何完成一个 在线聊天 和 在线画图 的AI应用。
主要特性和功能
Spring Cloud Alibaba AI目前基于 Spring AI 0.8.1版本API完成通义系列大模型的接入。通义接入是基于阿里云 阿里云百练 服务;而 阿里云百练 建立在 模型即服务(Maas)的理念基础之上,围绕AI各领域模型,通过标准化的API提供包括模型推理、模型微调训练在内的多种模型服务。
主要提供以下核心功能:
简单易用的集成
通过Spring Boot风格的自动配置机制,开发者只需少量代码配置,即可快速接入阿里云的AI服务。
丰富的AI服务支持
支持以下核心能力:
- 自然语言处理(NLP):文本分析、智能问答、翻译。
- 计算机视觉(CV):图像生成、图像识别、目标检测。
- 语音处理:语音识别、语音合成。
- 数据分析与预测:数据建模、趋势分析。
高度扩展性
通过配置中心和注册中心(如Nacos)实现动态扩展,支持微服务架构的扩展需求。提供接口定义,方便接入第三方AI平台。
构建AI应用
Spring Cloud Alibaba AI对Java版本有要求,所以需要提前预装好Java 17环境。
申请API-KEY
登录阿里云,进入 阿里云百炼 的页面:
https://bailian.console.aliyun.com/?apiKey=1#/api-key
创建自己的API-KEY:
添加依赖
在Spring Boot项目的 pom.xml 中添加 alibaba-ai依赖
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-ai</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
配置API-KEY
在application.yml中配置服务的相关属性,包括服务器地址、认证信息等。
server:
port: 8899
spring:
application:
name: SpringCloudAiExample
cloud:
ai:
tongyi:
connection:
# 配置在阿里云百炼里申请的api-key
api-key: sk-xxxxxx
- api-key 的配置是在阿里云百练里申请的api-key。
创建模型调用服务
@Service
@Slf4j
public class TongYiSimpleService {
@Resource
private TongYiChatModel chatClient;
@Resource
private TongYiImagesModel imageClient;
public String chat(String message) {
Prompt prompt = new Prompt(new UserMessage(message));
return chatClient.call(prompt).getResult().getOutput().getContent();
}
public String image(String message) {
ImagePrompt prompt = new ImagePrompt(message);
Image image = imageClient.call(prompt).getResult().getOutput();
return image.getB64Json();
}
}
聊天和图片的服务,分别通过注入 TongYiChatModel 和 TongYiImagesModel 对象来实现,屏蔽底层通义大模型交互细节。
创建controller
@RestController
@RequestMapping("/ai")
@CrossOrigin
@Slf4j
public class TongYiController {
@Resource
private TongYiSimpleService tongYiSimpleService;
@GetMapping("/chat")
public String chat(@RequestParam(value = "message") String message) {
return tongYiSimpleService.chat(message);
}
@GetMapping("/image")
public ResponseEntity<byte[]> image(@RequestParam(value = "message") String message) {
String b64Str = tongYiSimpleService.image(message);
byte[] imageBytes = Base64.getDecoder().decode(b64Str);
HttpHeaders headers = new HttpHeaders();
headers.setContentType(MediaType.IMAGE_JPEG); // 或者 MediaType.IMAGE_PNG 等,取决于图片格式
return new ResponseEntity<>(imageBytes, headers, HttpStatus.OK);
}
}
编写 Spring 入口类并启动应用
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class SpringCloudAiExampleApplication {
public static void main(String[] args) {
SpringApplication.run(SpringCloudAiExampleApplication.class, args);
}
}
至此,便完成了最简单的聊天 AI 应用开发,与普通的 Spring Boot 应用开发步骤完全一致。
测试效果
聊天接口
在浏览器输入:http://localhost:8899/ai/chat?message=你是谁
图片接口
在浏览器输入:http://localhost:8899/ai/image?message=漂亮的风景
搭配聊天页面
总结
当前版本的Spring Cloud Alibaba AI 主要完成了几种常见生成式模型的适配,涵盖对话、文生图、文生语音等。在未来的版本中将继续推出VectorStore、Embedding、ETL Pipeline、RAG 等更多 AI 应用开发场景的建设。