POJ 1163 The Triangle 简单DP

看题传送门门:http://poj.org/problem?id=1163


困死了。。。。QAQ


普通做法,从下往上,可得状态转移方程为:

dp[i][j]= a[i][j] + max (dp[i+1][j]  , dp[i+1][j+1] );

#include<cstdio>
#include<cstring>
int a[101][101];
int dp[101][101];

int main()
{
	int n;
	while(~scanf("%d",&n))
	{
		memset(a,0,sizeof(a));
		memset(dp,0,sizeof(dp));

		for(int i=1;i<=n;i++)	
			for(int j=1;j<=i;j++)
				scanf("%d",&a[i][j]);
		
		for(int i=1;i<=n;i++)
			dp[n][i]=a[n][i];

		for(int i=n-1;i>=1;i--)
		{
			for(int j=1;j<=i;j++)
				dp[i][j]= a[i][j] + (dp[i+1][j] > dp[i+1][j+1]? dp[i+1][j]:dp[i+1][j+1]);
		}

		printf("%d\n",dp[1][1]);
	}
}


记忆化搜索,本题数据量小,与上面的都是0ms,但记忆化搜索保证每个子结点只访问一次,速度应该更快。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[101][101];
int dp[101][101];
int n;
int d(int i,int j)
{
	if(dp[i][j]>=0)
		return dp[i][j];

	return dp[i][j]= a[i][j] + (i==n ? 0: max ( d(i+1,j) ,d(i+1,j+1)));
}

int main()
{
	while(~scanf("%d",&n))
	{
		memset(a,0,sizeof(a));
		memset(dp,-1,sizeof(dp));

		for(int i=1;i<=n;i++)	
			for(int j=1;j<=i;j++)
				scanf("%d",&a[i][j]);
		
		d(1,1);

		printf("%d\n",dp[1][1]);
	}
}


尝试使用宏定义让程序变得简洁而优雅

#include<cstdio>
#include<cstring>
#define  F(i,n) for(int i=1;i<=n;i++)
int a[101][101];
int dp[101][101];
int n;

int main()
{
	while(~scanf("%d",&n))
	{
		memset(a,0,sizeof(a));
		memset(dp,-1,sizeof(dp));

		F(i,n)
			F(j,i)
				scanf("%d",&a[i][j]);
		
		F(i,n)
			dp[n][i]=a[n][i];

		for(int i=n-1;i>=1;i--)
		{
			F(j,i)
				dp[i][j]= a[i][j]+ (dp[i+1][j] > dp[i+1][j+1]? dp[i+1][j]:dp[i+1][j+1]);
		}

		printf("%d\n",dp[1][1]);
	}
}


题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值