【深度学习】2. 第7章 深度学习中的正则化 占坑,待完成~

2人阅读 评论(0) 收藏 举报
分类:
 【深度学习】2. 第7章 深度学习中的正则化 占坑,待完成~
查看评论

深度学习基础教程

接触数据挖掘的算法多年,近一两年开始用到深度学习的算法.我也是从0开始一点一点学的,在学习的过程中感觉现在的教程不太适合初学者,现有的教程或书,要么是大堆的数学公式,吓跑初学者,要么是大堆的代码淹死初学者,要么是大堆的理论比喻,迷惑初学者,要么是大堆很牛的东西(没有参考文献),打击初学者.我觉得,把数学原理弄明白,再能用代码实现算法,这是最主要的,这个课程就是为了帮助初学者实现这个目的.
  • 2017年06月02日 12:47

[转]深度学习中的正则化

摘自实验楼:https://www.shiyanlou.com/courses/820/labs/2939/document部分内容 为了理解正则化在深度学习中的作用,我们以回归问题为例讲解。如图,...
  • jinbeibei0606
  • jinbeibei0606
  • 2017-06-24 17:19:55
  • 322

Deep Learning - 第七章:深度学习的正则化

前言 机器学习中的核心问题:模型的设计不仅在训练数据上表现好,并且能在新输入上泛化好; 正则化策略:以增大训练误差为代价,来减少测试误差(如果在训练误差上很小,可能出现过拟合的情况); ...
  • u014686462
  • u014686462
  • 2017-04-21 14:17:10
  • 1738

深度学习(Deep Learning)读书思考三:正则化

概述 正则化是机器学习中非常重要并且非常有效的减少泛华误差的技术,特别是在深度学习模型中,由于其模型参数非常多非常容易产生过拟合。因此研究者也提出很多有效的技术防止过拟合,比较常用的技术包括: ...
  • fangqingan_java
  • fangqingan_java
  • 2016-11-20 11:26:30
  • 3600

深度学习:正则化方法

正则化是机器学习中非常重要并且非常有效的减少泛华误差的技术,特别是在深度学习模型中,由于其模型参数非常多非常容易产生过拟合。因此研究者也提出很多有效的技术防止过拟合,比较常用的技术包括: 参...
  • liujiandu101
  • liujiandu101
  • 2017-02-14 18:27:49
  • 6398

深度学习中的常见正则化问题

深度学习中正则化的问题
  • liudianzhi8880
  • liudianzhi8880
  • 2017-10-13 15:28:47
  • 600

深度学习的正则化(一)

深度学习的正则化 §参数范数惩罚 正则化在深度学习的出现前就已经应用了数十年。线性模型,如线性回归和逻辑回归可以使用简单、直接有效的正则化策略。 许多正则化方法通过对目标函数添加了一个参数范数惩罚,限...
  • universe_ant
  • universe_ant
  • 2017-01-06 10:33:32
  • 662

深度学习:正则化(L2、dropout)

一、在了解正则化之前,先引入一个概念“过拟合” 定义 给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误...
  • kyang624823
  • kyang624823
  • 2017-11-27 16:41:27
  • 537

深度学习中的五大正则化技术

1 数据增强 2 L1 和 L2 正则化 3 Dropout 4 Drop Connect 5 早停法 正则化技术是保证算法泛化能力的有效工具,它可以令参数数量多于输入数据量的网络避免产生...
  • qq_20909377
  • qq_20909377
  • 2018-01-04 22:12:49
  • 180

Deep Learning读书笔记3---深度学习中的正则化

1.概念正则化定义为“对学习算法的修改——旨在减少泛化误差而不是训练误差”。 目前有许多正则化策略。 有些策略向机器学习模型添加限制参数值的额外约束。 有些策略向目标函数增加额外项来对参数值进行软...
  • u012554092
  • u012554092
  • 2017-09-15 09:28:55
  • 1621
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 16万+
    积分: 3740
    排名: 1万+