机器学习,梯度下降算法,数学原理,高等数学如此简单
今天讲解的内容是梯度下降算法中的数学原理。其中包括导数、多元函数、偏导数和梯度。接下来我们逐一进行讲解。
一、导数
首先来看导数。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
例如,图1表示赛跑时,运动员的速度v随时间t变化的曲线。如果希望得到速度变化的快慢,需要画出加速度a随时间t变化的曲线。速度变化越快,加速度越大,速度变化越慢,加速度越小。
具体的,前5秒速度增加的快,加速度就大,5秒到10秒之间,速度基本不变,加速度趋近于0,最后几秒冲刺,速度随着时间增加而变大,加速度也随之变大。这里加速度a就等于速度v对时间t的求导,也是速度v随时间t变化的曲线上的变化率。
这样的例子还有很多。
例如,速度描述一段时间内路程变化的快慢,即速度是路程对时间的导数。功率描述一段时间内做功的快慢,即功率是功对时间的导数。导数计算有很多公式,这里只讲解梯度下降算法中使用到的幂函数求导公式。