【学习笔记】:Multi-mode Transformer Transducer with Stochastic Future Context 原文链接文章基本信息:题目,作者,作者机构,发表刊物或会议,年份,期刊会议等级(CCF)题目,Multi-mode Transformer Transducer with Stochastic Future Context作者,Kwangyoun Kim1, Felix Wu1, Prashant Sridhar1, Kyu J. Han1, Shinji Watanabe2作者机构,1ASAPP , USA 2Carnegie Mellon University, USA发表刊物...
ubuntu系统安装 cat /proc/versionuname -alsb_release -ahttps://mirrors.ustc.edu.cn/repogen/deb https://mirrors.ustc.edu.cn/ubuntu-old-releases/ubuntu/ eoan main restricted universe multiversedeb-src https://mirrors.ustc.edu.cn/ubuntu-old-releases/ubuntu/ eo...
Viterbi算法 δ1(sunny)= 0.63*0.60=0.378δ1(cloudy)= 0.17*0.25=0.0425δ1(rainy)= 0.20*0.05=0.01δ2(suuny) = max (0.378*0.5, 0.0425*0.25, 0.01*0.25) * 0.15= max (0.189, 0.01, 0.0025) * 0.15≈0.03δ2(cloudy)= max (0.378*0.375, 0.0425*0.125, 0.01*0.375)...
hive 配置 上传jar包配置hive-site.xml<?xml version="1.0"?><?xml-stylesheet type="text/xsl" href="configuration.xsl"?><configuration> <property> <name>javax.jdo.option.ConnectionURL</name> <value&g
Hadoop-HA配置 core-site.xml<configuration> <property> <name>hadoop.tmp.dir</name> <value>/home/muzi/hadoop/data/tmp</value> <description>Abase for other temporary directories.</description>...
学习笔记:隐马尔科夫 马尔科夫过程马尔科夫模型aij从i状态转移到j状态的概率n元条件概率计算量会很大,解决办法:一阶马尔科夫模型降低事件之间的关联度定义:马尔科夫模型可以用一个三元组(π,A,B)来定义:1. π 表示初始状态概率的向量2. A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率3. B =(bij)混淆矩阵 P(Yi|Xj)在某...
学习笔记:N元语法(n-gram) 语言模型语言模型能够量化和衡量那个句子更合理n元语法二元语法模型二元语法模型对于多元语法模型的不足之处无法获取更长序列的语境信息 二元只考虑前面的单词,多元考虑的单词更多一元语法模型...
贝叶斯定理 条件概率全概率公式贝叶斯定理贝叶斯的底层思想如果我们能掌握一个事情的全部信息,我们能计算出一个客观规律(古典概率,正向概率) 生活中绝大多数决策面临的信息都是不全的, 无法的到全面的信息混淆矩阵混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。具体评价指标有总体精度、制图精度、用户精度等,这些精度指标从不同的侧面反映了图像分类的精度。在人工智能中,混淆矩阵(confusion ...
大数据笔记 目录zookeeper/etc/profilezoo.cfgmyidzookeeper wget https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/zookeeper-3.5.9/apache-zookeeper-3.5.9-bin.tar.gz tar -zxvf apache-zookeeper-3.5.9-bin.tar.gz -C apps/ mv apache-zookeeper-3.5....
L1,L2正则化与Logistic回归模型中权值向量的稀疏 性的可视化分析----代码解析 """==============================================L1 Penalty and Sparsity in Logistic Regression==============================================Comparison of the sparsity (percentage of zero coefficients) of solutions whenL1, L2 and Elastic-Net pena...
【学习随笔】图灵-计算机器与人工智能 思维导图模仿游戏 作者首先提出了"Can machines think?" (“机器可以思考吗?”)这个问题。相比与尝试定义“机器”“思考”,作者提出了“模仿游戏”。 一个男人(A),一个女人(B)和一个可以是任意性别的询问者(C),A模仿B来误导C的判断,C通过询问AB判断具体两人性别。 从而提出"What will happen when a machine takes the part of A in this game?"(“当让一个机器...
传教士与野人-java编程 代码import java.util.LinkedList;import java.util.List;public class Test2 { /** 可能存在的状态[野人][传教士][方向] */ static int possibilities[][][]; /** 路径 */ static List<State> route = new LinkedList<State>(); static int savageNum = 3; static int pr
python 脚本----学习笔记 1·Centos上安装python3.8#!/bin/bash# install python3.8mkdir /usr/local/python3yum install openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel sqlite-devel# download pythonwget https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz# unzipt
Shell脚本常用操作----学习笔记 1·获取单词音标result=$(curl "http://dict.cn/$1" | grep 'EN-US' |sed -e 's/<[^>]*>//g' -e 's/[[:space:]]//g' -e 's/\[//g' -e 's/\]//g' | head -1) sed -e 's/\[//g' -e 's/\]//g' #去除音标两边的括号 result 为单词音标 $1为单词...