import onnx
model = onnx.load(r’C:\Users\320133514\Desktop\batch2dnnunet.onnx’)
graph = model.graph
node = graph.node
out = model.graph.output
for i in range(len(node)):
print(node[i])
for i in range(len(node)):
if node[i].op_type == ‘Conv’:
node_rise = node[i]
if node_rise.output[0] == ‘191’:
print(i)
if node_rise.output[0] == ‘200’:
print(i)
if node_rise.output[0] == ‘209’:
print(i)
if node_rise.output[0] == ‘218’:
print(i)
if node_rise.output[0] == ‘227’:
print(i)
if node_rise.output[0] == ‘236’:
print(i)
del node[101]
del node[92]
del node[83]
del node[74]
del node[65]
del node[56]
del out[1]
del out[1]
del out[1]
del out[1]
del out[1]
del out[1]
onnx.checker.check_model(model)
onnx.save(model, ‘A2d-new-nnunet.onnx’)
这段代码展示了如何使用Python的ONNX库加载并操作ONNX模型。首先,它加载了一个位于指定路径的ONNX模型,并获取了模型的图形结构、节点和输出。接着,遍历所有节点,查找并打印出所有'Conv'操作类型的节点,特别是那些输出名称匹配特定字符串的节点。然后,删除了几个指定索引的节点和输出。最后,检查模型的完整性和保存了修改后的模型。
393

被折叠的 条评论
为什么被折叠?



