Ubuntu16.04下,通过pyenv安装anaconda,并安装tensorflow-gpu和opencv等库的简单方法

本文介绍两种安装tensorflow gpu版本的方法。第一种来自tensorflow官网推荐的方法,通过virtualenv建立纯净虚拟环境,在虚拟环境里安装。
第二种使用pyenvanaconda刚接触Ubuntupython不久,写代码时摆脱不了IDE,比如anacondaspyder,并且anaconda自带了很多库,非常方便。
第一种方法的缺点是太纯净,所以在第一种方法安装完之后,尝试了第二种方法。将anaconda安装在pyenv里,避免和系统自带python版本冲突。
然后在anoconda里直接用conda安装tensorflow-gpuopencv等,安装过程很简单,而且可以在spyder里导入。
我的显卡是刚入门的GeForce GT 730M,刚好能达到装cuda的分数线。之前一直觉得这张卡不堪用,没必要装gpu版。跑CPU-only caffefaster-Rcnndemo时,
一张图片需要二十几秒钟。后来装了cuda, 使用GPU caffe运行demo发现一张图只需要两秒多,速度提升近十倍,第一次感受到GPU的强大。如果显卡能装cuda那就装吧。

第一种方法来自tensorflow官方推荐的virtualenv方法,大致如下

1.安装cuda	Nvidia官网http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html下载.deb文件,按照3.Package manager installation
方式安装,中间没有碰到问题。
接下是Post-installation action,也就是添加环境变量:$ export PATH=/usr/local/cuda-8.0.61/bin${PATH:+:${PATH}}不过要注意这里的版本号
cuda-8.0.61,我的文件夹下是cuda-8.0,改过来就好。
这里有点疑惑,官网的意思是直接在terminal上用export命令,这样效力仅限本次登录。网上有很多教程是在.bashrc文件里添加,这样以后会一直有效。
我采用了官网的方法。	
安装sample时报过错,在网上能找到解决方案。
2.安装cudnn        
cudnn的安装很容易,解压之后做两次复制。
3.利用virtualenv建立干净的虚拟环境,激活虚拟环境,并安装pippip3安装tensorflow gpu版。

第二种安装利用pyenvconda

1.      pyenv的安装和介绍可以参考 https://segmentfault.com/a/1190000004020387
2.	$pyenv install –list,查看可以安装的python版本,包括了anaconda;
3.	$pyenv install anaconda-x,安装anaconda-x,(-x是第1步列出的某个版本号)安装路径.pyenv/version/下,不会对系统环境产生影响;
4.	$pyenv global anaconda-x,全局切换到anaconda环境;
5.	$conda install tensorflow-gpu,这时conda会自动安装需要的cudacudnn
6.	$conda install opencv,没有碰到问题。
7.	$pyenv global system,安装完需要的库之后 切换回系统自带python版本。需要使用anacondatensorflow时用上面的命令3切换到anaconda环境,
可以直接在terminal下输入$python进入python,也可以$spyder,在spyder中编辑代码。

验证安装

安装完成后$python,然后依次输入下面命令,最后输出”Hello, TensorFlow!,说明安装完成。
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
需要说明的是,我是在没有卸载第一种方式的情况下尝试的第二种。如果直接用第二种方式应该也不会有问题。
  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

滑翔蝙蝠

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值