历史赛道素材来源渠道,做历史图文或中视频,从此不再为文案发愁

大家好,我是吴成

每天都会把自己看过的书了解过的副业项目和收集到的资料以及脑海里闪现过的项目灵感分享和整理出来在我的社群 易成创业课堂 中进行分享

添加下方微信赠送你一套自媒体手册,包含

《自媒体变现的50种方法拆解》+《自媒体引流50招》+《自媒体常用工具》

从项目原理到操作步骤详细介绍,相信这套教程一定会对你有帮助!!!

扫码备注:666

fd2a1b355fd3b1d9f0c10fabbdf6b2d6.png

v:476430956

相信大家都知道写作是可以获取很多平台给的稿费的,那么做中视频、头条或者百家号图文有一个赛道是历史类赛道,今天就给大家分享一些找历史素材的渠道

1、趣历史

http://www.qulishi.com/renwu

趣历史是很不错的历史网站,搜集整理了各朝代人物、战争、野史、文化等全方面历史知识,以及环球各个国家历史文化,提供全面的历史知识阅读平台

1efe0d14736f71404a2f3d6d297018fc.png

2、古今历史网

http://www.y1984.com/index.html

这个网站每天都在不断的更新,也是有各类从古到今,历朝列代的历史素材,除了有国内的,也有世界上其他国家的

4bfded2b39a591323c1d7f9ef88ec961.png

3、历史资料网

http://www.3233.cn/


历史资料网是一个专业的历史网站,特别为广大历史爱好者收集整理了各类历史奇闻趣事、历史人物、历史资料等,在历史资料网,读史使人明智,你可以充分且从不同方面的对各类历史进行深入洞察

a28ac5cf383ef041305a9f7fa74c556f.png

我们掌握好这些历史素材渠道后,在写的时候可以适当改写一下,这样我们的文案原创度会更高!

4、可以在百度上去搜索

site:qulishi.com 李世民 

然后就会出现趣历史网站上所有的关于李世民的事件或者故事

124fcecf771dc9f61d0145658e886d5a.png

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值