LeetCode 3349. 检测相邻递增子数组 I, 3350. 检测相邻递增子数组 II【数组分段,一次遍历】

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

3349. 检测相邻递增子数组 I

给你一个由 n 个整数组成的数组 nums 和一个整数 k,请你确定是否存在 两个 相邻 且长度为 k 的 严格递增 子数组。具体来说,需要检查是否存在从下标 a 和 b (a < b) 开始的 两个 子数组,并满足下述全部条件:

  • 这两个子数组 nums[a..a + k - 1] 和 nums[b..b + k - 1] 都是 严格递增 的。
  • 这两个子数组必须是 相邻的,即 b = a + k

如果可以找到这样的 两个 子数组,请返回 true;否则返回 false

子数组 是数组中的一个连续 非空 的元素序列。

示例 1:

输入:nums = [2,5,7,8,9,2,3,4,3,1], k = 3
输出:true
解释:
- 从下标 `2` 开始的子数组为 `[7, 8, 9]`,它是严格递增的。
- 从下标 `5` 开始的子数组为 `[2, 3, 4]`,它也是严格递增的。
- 两个子数组是相邻的,因此结果为 `true`。

示例 2:

输入:nums = [1,2,3,4,4,4,4,5,6,7], k = 5
输出:false

提示:

  • 2 <= nums.length <= 100
  • 1 <= 2 * k <= nums.length
  • -1000 <= nums[i] <= 1000

3350. 检测相邻递增子数组 II

给你一个由 n 个整数组成的数组 nums ,请你找出 k 的 最大值,使得存在 两个 相邻 且长度为 k 的 严格递增 子数组。具体来说,需要检查是否存在从下标 a 和 b (a < b) 开始的 两个 子数组,并满足下述全部条件:

  • 这两个子数组 nums[a..a + k - 1] 和 nums[b..b + k - 1] 都是 严格递增 的。
  • 这两个子数组必须是 相邻的,即 b = a + k

返回 k 的 最大可能 值。

子数组 是数组中的一个连续 非空 的元素序列。

示例 1:

输入:nums = [2,5,7,8,9,2,3,4,3,1]
输出:3
解释:
- 从下标 2 开始的子数组是 `[7, 8, 9]`,它是严格递增的。
- 从下标 5 开始的子数组是 `[2, 3, 4]`,它也是严格递增的。
- 这两个子数组是相邻的,因此 3 是满足题目条件的 最大 `k` 值。

示例 2:

输入:nums = [1,2,3,4,4,4,4,5,6,7]
输出:2
解释:
- 从下标 0 开始的子数组是 `[1, 2]`,它是严格递增的。
- 从下标 2 开始的子数组是 `[3, 4]`,它也是严格递增的。
- 这两个子数组是相邻的,因此 2 是满足题目条件的 最大 `k` 值。

提示:

  • 2 <= nums.length <= 2 * 10^5
  • -10^9 <= nums[i] <= 10^9

方法 一次遍历(3350题解)

我们遍历 n u m s nums nums ,寻找严格递增段(子数组)。设当前严格递增段的长度为 c n t cnt cnt ,上个严格递增段的长度为 p r e C n t preCnt preCnt

答案有两种情况:

  • 两个子数组属于同个严格递增段(或者说考虑将当前严格递增段分为两段),那么 k k k 最大是 ⌊ c n t 2 ⌋ \lfloor \dfrac {cnt} {2} \rfloor 2cnt
  • 两个子数组分别属于一对相邻的严格递增段,那么 k k k 最大是 min ⁡ ( p r e C n t , c n t ) \min(preCnt, cnt) min(preCnt,cnt)

用3350题的做法解得 k k k 的最大可能值 a n s ans ans 后,判断题目传入的 k k k 是否 ≤ \le 最大可能值 a n s ans ans 即可解决3349题。

class Solution {
public:
    int maxIncreasingSubarrays(vector<int>& nums) {
        int ans = 0, pre_cnt = 0, cnt = 0;
        for (int i = 0; i < nums.size(); i++) {
            cnt++;
            if (i == nums.size() - 1 || nums[i] >= nums[i + 1]) { // i 是严格递增段的末尾
                ans = max({ans, cnt / 2, min(pre_cnt, cnt)});
                pre_cnt = cnt;
                cnt = 0;
            }
        }
        return ans;
    }
};
class Solution {
    public int maxIncreasingSubarrays(List<Integer> nums) {
        int ans = 0;
        int preCnt = 0;
        int cnt = 0;
        for (int i = 0; i < nums.size(); i++) {
            cnt++;
            // i 是严格递增段的末尾
            if (i == nums.size() - 1 || nums.get(i) >= nums.get(i + 1)) {
                ans = Math.max(ans, Math.max(cnt / 2, Math.min(preCnt, cnt)));
                preCnt = cnt;
                cnt = 0;
            }
        }
        return ans;
    }
}
// 写法二
class Solution {
    public int maxIncreasingSubarrays(List<Integer> nums) {
        Integer[] a = nums.toArray(Integer[]::new); // 转成数组处理,更快
        int ans = 0;
        int preCnt = 0;
        int cnt = 0;
        for (int i = 0; i < a.length; i++) {
            cnt++;
            // i 是严格递增段的末尾
            if (i == a.length - 1 || a[i] >= a[i + 1]) {
                ans = Math.max(ans, Math.max(cnt / 2, Math.min(preCnt, cnt)));
                preCnt = cnt;
                cnt = 0;
            }
        }
        return ans;
    }
}
impl Solution {
    pub fn max_increasing_subarrays(nums: Vec<i32>) -> i32 {
        let mut ans = 0;
        let mut pre_cnt = 0;
        let mut cnt = 0;
        let n = nums.len();
        for i in 0..n {
            cnt += 1;
            if i == n - 1 || nums[i] >= nums[i + 1] { // i是严格递增段的末尾
                ans = ans.max((cnt / 2).max(pre_cnt.min(cnt)));
                pre_cnt = cnt;
                cnt = 0;
            }
        }
        ans
    }
}
func maxIncreasingSubarrays(nums []int) (ans int) {
	preCnt, cnt := 0, 0
	for i, x := range nums {
		cnt++
		if i == len(nums)-1 || x >= nums[i+1] { // i 是严格递增段的末尾
			ans = max(ans, cnt/2, min(preCnt, cnt))
			preCnt = cnt
			cnt = 0
		}
	}
	return
}
class Solution:
    def maxIncreasingSubarrays(self, nums: List[int]) -> int:
        ans = pre_cnt = cnt = 0
        for i, x in enumerate(nums):
            cnt += 1
            if i == len(nums) - 1 or x >= nums[i + 1]:  # i 是严格递增段的末尾
                ans = max(ans, cnt // 2, min(pre_cnt, cnt))
                pre_cnt = cnt
                cnt = 0
        return ans

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n) ,其中 n n n n u m s nums nums 的长度。
  • 空间复杂度: O ( 1 ) O(1) O(1)

专题训练

其他做法见分组循环。滑动窗口(定长/不定长/多指针)专题的最后。

### 解题思路 LeetCode 第 674 题的目标是找到给定数组中的最长连续递增子序列的长度。此问题可以通过一次线性扫描来解决,时间复杂度为 O(n),空间复杂度可以优化到 O(1)[^1]。 #### 关键点分析 - **连续性**:题目强调的是“连续”,因此只需要比较相邻两个元素即可判断是否构成递增关系。 - **动态规划 vs 贪心算法**:虽然可以用动态规划的思想解决问题,但由于只需记录当前的最大值而无需回溯历史状态,贪心策略更为高效[^3]。 --- ### Python 实现 以下是基于贪心算法的 Python 实现: ```python class Solution: def findLengthOfLCIS(self, nums): if not nums: # 如果输入为空,则返回0 return 0 max_len = 1 # 至少有一个元素时,最小长度为1 current_len = 1 # 当前连续递增序列的长度初始化为1 for i in range(1, len(nums)): # 从第二个元素开始遍历 if nums[i] > nums[i - 1]: # 判断当前元素是否大于前一个元素 current_len += 1 # 是则增加当前长度 max_len = max(max_len, current_len) # 更新全局最大长度 else: current_len = 1 # 否则重置当前长度 return max_len # 返回最终结果 ``` 上述代码通过维护 `current_len` 和 `max_len` 来跟踪当前连续递增序列的长度以及整体的最大长度。 --- ### Java 实现 下面是等效的 Java 版本实现: ```java public class Solution { public int findLengthOfLCIS(int[] nums) { if (nums.length == 0) { // 处理边界情况 return 0; } int maxLength = 1; // 初始化最大长度 int currentLength = 1; // 初始化当前长度 for (int i = 1; i < nums.length; i++) { if (nums[i] > nums[i - 1]) { // 若满足递增条件 currentLength++; // 增加当前长度 maxLength = Math.max(maxLength, currentLength); // 更新最大长度 } else { currentLength = 1; // 不满足递增条件时重新计数 } } return maxLength; // 返回结果 } } ``` 该版本逻辑与 Python 类似,但在语法上更贴近 Java 的特性[^4]。 --- ### C++ 实现 对于 C++ 用户,下面是一个高效的解决方案: ```cpp #include <vector> #include <algorithm> // 使用 std::max 函数 using namespace std; class Solution { public: int findLengthOfLCIS(vector<int>& nums) { if (nums.empty()) { // 边界处理 return 0; } int result = 1; // 结果变量 int count = 1; // 当前连续递增序列长度 for (size_t i = 1; i < nums.size(); ++i) { if (nums[i] > nums[i - 1]) { // 检查递增条件 count++; result = max(result, count); } else { count = 1; // 重置计数器 } } return result; // 返回最终结果 } }; ``` 这段代码同样遵循了单次遍历的原则,并利用标准库函数简化了一些操作。 --- ### 小结 三种语言的核心思想一致,均采用了一种简单的线性扫描方式完成任务。这种方法不仅易于理解,而且性能优越,在实际应用中非常实用[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值