特征工程

常见特征工程

1. 异常处理

  • 通过箱线图(或 3-Sigma)分析删除异常值;
  • BOX-COX 转换(处理有偏分布);
  • 长尾截断;

2. 特征归一化/标准化:

  • 标准化(转换为标准正态分布);
  • 归一化(抓换到 [0,1] 区间);
  • 针对幂律分布,可以采用公式:log(\frac{1+x}{1+median})

3. 数据分桶:

  • 等频分桶;
  • 等距分桶;
  • Best-KS 分桶(类似利用基尼指数进行二分类);
  • 卡方分桶;

4. 缺失值处理:

  • 不处理(针对类似 XGBoost 等树模型);
  • 删除(缺失数据太多);
  • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
  • 分箱,缺失值一个箱;

5. 特征构造:

  • 构造统计量特征,报告计数、求和、比例、标准差等;
  • 时间特征,包括相对时间和绝对时间,节假日,双休日等;
  • 地理信息,包括分箱,分布编码等方法;
  • 非线性变换,包括 log/ 平方/ 根号等;
  • 特征组合,特征交叉;
  • 仁者见仁,智者见智。


6. 特征筛选

  • 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系
  • 数法/卡方检验法/互信息法;
  • 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有
  • LVM(Las Vegas Wrapper) ;
  • 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有
  • lasso 回归;

7. 降维

  • PCA/ LDA/ ICA;
  • 特征选择也是一种降维。

代码示例

1.删除异常值

下面是利用箱型图进行异常值删除

def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True)
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())

    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n

2.特征构造

根据数据特征名称判别构造一些新的数据,如两个时间的差值。同时基于特征进行处理,比如装箱,groupby,agg 等这样一些操作进行一些特征统计,构造成统计量特征。此外还可以对特征进行进一步的 log,exp 等变换,或者对多个特征进行四则运算,多项式组合等然后进行筛选。对于一些匿名特征,由于特性的匿名性其实限制了很多对于特征的处理,当然有些时候用 NN 去提取一些特征也会达到意想不到的良好效果。对于知道特征含义(非匿名)的特征工程,特别是在工业类型比赛中,会基于信号处理,频域提取,丰度,偏度等构建更为有实际意义的特征,这就是结合背景的特征构建,在推荐系统中也是这样的,各种类型点击率统计,各时段统计,加用户属性的统计等等,这样一种特征构建往往要深入分析背后的业务逻辑或者说物理原理,从而才能更好的找到 magic。

3.特征筛选

1)过滤式

计算特征之间的相关系数从而筛选特征

2)包裹式

from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LinearRegression(),
            k_features=10,
            forward=True,
            floating=False,
            scoring = 'r2',
            cv = 0)
x = data.drop(['price'], axis=1)
x = x.fillna(0)
y = data['price']
sfs.fit(x, y)
sfs.k_feature_names_

3)嵌入式

Lasso 回归和决策树可以完成嵌入式特征选择
大部分情况下都是用嵌入式做特征筛选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值