[文摘]商群

http://zh.wikipedia.org/zh-cn/%E5%95%86%E7%BE%A4

数学中,给定一个 G 和 G 的正规子群 NG 在 N 上的商群因子群,在直觉上是把正规子群 N萎缩单位元的群。商群写为 G/N 并念作 G mod N (mod 是的简写)。如果 N 不是正规子群,商仍可得到,但结果将不是群,而是齐次空间

设 N 是群 G 的正规子群。我们定义集合 G/N 是 N 在 G 中的所有左陪集的集合,就是说 G/N = { aN : aG }。在 G/N 上的群运算定义如上。换句话说,对于每个 G/N 中 aN 和 bNaN 和 bN 的乘积是 (aN)(bN)。这个运算是闭合的,因为 (aN)(bN实际上是左陪集:

(aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = (ab)N

N 的正规性被用在了这个等式中。因为 N 的正规性,N 在 G 中的左陪集和右陪集是相等的,所以 G/N 也可以定义为 N 在 G 中所有的右陪集的集合。因为运算是从 G 的子集的乘积得出的,这个运算是良好定义的(不依赖于表示的特定选择),符合结合律的,并有单位元 NG/N 的元素 aN 的逆元是 a−1N

定义的动机

G/N 叫做商群的理由来自整数除法。在 12 除以 3 的时候得到答案 4 是因为我们可以把 12 个对象重现分组为 3 个对象的 4 个子搜集。商群出于同样想法,但用一个群作为最终答案而非一个数,因为群要比对象的随机搜集要更有结构。

更细致的说,在查看 G/N 而 N 是 G 的正规子群的时候,这个群结构形成一种自然“重新分组”。它们是 N 在 G 中陪集。 因为我们从一个群和正规子群得到的最终的商包含比只是陪集的(正常除法所产生的)数目要更多的信息,这里得到了一个群结构自身

例子

§ 考虑整数集 Z (在加法下)的群和所有偶数构成的子群 2Z。这是个正规子群,因为 Z 是阿贝尔群。只有两个陪集: 偶数的集合和奇数的集合;因此商群 Z/2Z 是两个元素的循环群。这个商群同构于集合 { 0, 1 } 带有模 2 加法运算的群;非正式的说,有时称 Z/2Z 等于集合 { 0, 1 } 带有模 2 加法。

§ 上个例子的稍微一般化。再次考虑整数集 Z 在加法下的群。设 n 是任何正整数。我们考虑由 n 的所有倍数构成的 Z 的子群 nZnZ 在 Z 中还是正规子群因为 Z 是阿贝尔群。陪集们是搜集 {nZ,1+nZ,...,(n−2)+nZ,(n−1)+nZ}。整数 k 属于陪集 r+nZ,这里的 r 是 k 除以 n 的馀数。商 Z/nZ 可以被认为模以 n 的“馀数”的群。这是个 n 阶循环群

 考虑阿贝尔群 Z4 = Z/4Z (也就是集合 { 0, 1, 2, 3 } 带有加法 4),和它的子群 { 0, 2 }。商群 Z4 / { 0, 2 } 是 { { 0, 2 }, { 1, 3 } }。这是带有单位元 { 0, 2 } 的群,群运算如 { 0, 2 } + { 1, 3 } = { 1, 3 }。子群 { 0, 2 } 和商群 { { 0, 2 }, { 1, 3 } } 同构于 Z2

性质

商群 G / G 同构于平凡群(只有一个元素的群),而 G / {e} 同构于 G

G / N 的定义为等于 [G : N],它是 N 在 G 中的子群的指标(index)。如果 G 是有限的,这个指标还等于 G 的阶除以 N 的阶。注意 G / N 可以在 G 和 N 二者是无限的时候是有限的(比如 Z / 2Z)。

有一个“自然”满射群同态 π : G → G / N,把每个 G 的元素 g 映射到 g 所属于的 N 的陪集上,也就是: π(g) = gN。映射 π 有时叫做“ G 到 G / N 上的规范投影”。它的是 N

在包含 N 的 G 的子群和 G / N 的子群之间有一个双射映射;如果 H 是包含 N 的 G 的子群,则对应的 G / N 的子群是 π(H)。这个映射对于 G 的正规子群和 G / N 也成立,并在格定理中形式化。

商群的一些重要性质记录在同态基本定理同构基本定理中。

如果 G 是阿贝尔群幂零群可解群,则 G / N 也是。

如果 G 是循环群有限生成群,则 G / N 也是。

如果 N 被包含在 G 的中心内,则 G 也叫做这个商群的中心扩张

如果 H 是在有限群 G 中的子群,并且 H 的阶是 G 的阶的一半,则 H 保证是正规子群,因此 G / H 存在并同构于 C2。这个结果还可以陈述为“任何指标为 2 的子群都是正规子群”,并且它的这种形式还适用于无限群。

所有群都同构于一个自由群的商。

http://wapedia.mobi/zhsimp/%E7%BE%A4%E5%90%8C%E6%85%8B#1.

1. 像和核

我们定义 h 的为被映射到 H 中单位元上的 G 中的那些元素的集合

ker(h) = { u ∈ G : h(u) = eH }

定义 h 的

im(h) = { h(u) : u ∈ G }

核是 G 的正规子群 (事实上,h(g-1u g) = h(g)-1h(uh(g) = h(g)-1eH h(g) = h(g)-1h(g) = eH而像是 H 的子群。同态 h 是单射 (并叫做单同态当且仅当 ker(h) = {eG}

同态的核和可以被解释为对它接近于同构程度的程度。第一同构定理声称群同态的 im(h同构于商群 G/ker(h)

2. 例子

· 考虑带有加法的循环群 Z/3Z = {0, 1, 2} 和整数集 Z 的群。映射 h : Z → Z/3Z,有着 h(u) = u 以 3,是群同构。它是满射并且它的核由被三整除的所有整数构成。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值