数学之路-数据分析进阶-多变量数据分析(1)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010255642/article/details/39477789
> ejdqz<-read.csv("ejdqz.csv")
> ejdqz
  年.度 求职人数 绝对求职指数 相对求职指数
1  2008  3045412          100          100
2  2009  3413202          112          112
3  2010  3902961          128          121
4  2011  3675531          121          106
5  2012  3765853          124          107
6  2013  3562515          117          100
7  2014  3350834          110           94

> pairs(ejdqz)

本博客所有内容是原创,如果转载请注明来源

http://blog.csdn.net/myhaspl/




查看这个图的方式是固定代表变量的某1列(或某几列)查看与其它变量的变量,也可以固定代表变量的某1行(或某几行)。

比如定位于2012年,将目光定位于第一行,求职人数接近380万,而绝对求职指数略高于120,相对求职指数在105到110之间。

> source<-read.csv("xscj.csv")

> source

   学号期末考试 平时成绩 总成绩

1  201       60       74  65.6

2  202       43       64  51.4

3  203       91       41  71.0

 

> pairs(source)

从下图可看出,第3行第2列的散点图显示,平时成绩与期末考试成绩有很大的线性相关性,平时成绩较好的,期末考试成绩也较好,平时成绩较差的同时,期末考试成绩普通较差,观察第3行第4列的散点图


下面是某产品销量表

> goods<-read.csv("f:/goods.csv")

> goods

   地区编码月份 销量

1         1    1 1200

2         1    2 3210

3         1    3 123

4         1    4 1111


显示

> library(scatterplot3d)

> scatterplot3d(地区编码,月份,销量,highlight.3d=TRUE,pch=20,col.axis="blue",col.grid="lightblue",grid=TRUE,type="h",main="销量一览表",lab=c(4,12))



展开阅读全文

没有更多推荐了,返回首页