最小割的性质

版权声明:myjs999原创文章<br> https://blog.csdn.net/myjs999/article/details/82770890

数量性质

不同的最小割数量至多为n1n-1

最小割确定性

称在任一最小割方案中,在残量图上,由源点出发能到达的点的集合为源点残集,能到汇点的点的集合为汇点残集。称在任一最小割方案中,按最小割将图分为两部分,与源点连通的点集为源点割集,与汇点连通的点集为汇点割集。则最小割有以下性质:

  • 源点残集一定属于源点割集,汇点残集一定属于汇点割集。
    • 推论:若源点残集与汇点残集的并是整张图,则最小割方案唯一。
    • 推论:若一条边满流,且其一个端点属于源点残集,另一个端点属于汇点残集,则这条边在所有的最小割方案中。
  • 若一条边满流,且在残量图中其两端点不连通,则这条边可能在某些最小割方案中。

最小割方案计数

一般图最小割方案计数为NP问题。

平面图上,该问题可转换为最短路计数。

最小割树(分治最小割)

用于求任意两点间的最小割大小。

每次随机取两个点,求它们的最小割,将图分为两部分,在这两个集合间连一条边权为最小割的边,然后递归处理两个集合。这样最后会得到一棵树。则两个点之间的最小割大小为其树上唯一路径的最小值。

实现时每次更新两部分中的每对点的答案即可。

这东西网上就两道模板题,还都是省选。

阅读更多

没有更多推荐了,返回首页