原地址:https://www.cnblogs.com/myseries/p/11265849.html
一、前言
中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种。
垂直拆分比较简单,也就是本来一个数据库,数据量大之后,从业务角度进行拆分多个库。如下图,独立的拆分出订单库和用户库。
水平拆分的概念,是同一个业务数据量大之后,进行水平拆分。
上图中订单数据达到了4000万,我们也知道mysql单表存储量推荐是百万级,如果不进行处理,mysql单表数据太大,会导致性能变慢。使用方案可以参考数据进行水平拆分。把4000万数据拆分4张表或者更多。当然也可以分库,再分表;把压力从数据库层级分开。
二、分库分表方案
分库分表方案中有常用的方案,hash取模和range范围方案;分库分表方案最主要就是路由算法,把路由的key按照指定的算法进行路由存放。下边来介绍一下两个方案的特点。
1、hash取模方案
在我们设计系统之前,可以先预估一下大概这几年的订单量,如:4000万。每张表我们可以容纳1000万,也我们可以设计4张表进行存储。
那具体如何路由存储的呢?hash的方案就是对指定的路由key(如:id)对分表总数进行取模,上图中,id=12的订单,对4进行取模,也就是会得到0,那此订单会放到0表中。id=13的订单,取模得到为1,就会放到1表中。为什么对4取模,是因为分表总数是4。
-
优点:
订单数据可以均匀的放到那4张表中,这样此订单进行操作时,就不会有热点问题。
热点的含义:热点的意思就是对订单进行操作集中到1个表中,其他表的操作很少。
订单有个特点就是时间属性,一般用户操作订单数据,都会集中到这段时间产生的订单。如果这段时间产生的订单 都在同一张订单表中,那就会形成热点,那张表的压力会比较大。
-
缺点:
将来的数据迁移和扩容,会很难。
如:业务发展很好,订单量很大,超出了4000万的量,那我们就需要增加分表数。如果我们增加4个表
一旦我们增加了分表的总数,取模的基数就会变成8,以前id=12的订单按照此方案就会到4表中查询,但之前的此订单时在0表的,这样就导致了数据查不到。就是因为取模的基数产生了变化。
遇到这个情况,我们小伙伴想到的方案就是做数据迁移,把之前的4000万数据,重新做一个hash方案,放到新的规划分表中。也就是我们要做数据迁移。这个是很痛苦的事情。有些小公司可以接受晚上停机迁移,但大公司是不允许停机做数据迁移的。
当然做数据迁移可以结合自己的公司的业务,做一个工具进行,不过也带来了很多工作量,每次扩容都要做数据迁移
那有没有不需要做数据迁移的方案呢,我们看下面的方案
2、range范围方案
range方案也就是以范围进行拆分数据。
range方案比较简单,就是把一定范围内的订单,存放到一个表中;如上图id=12放到0表中,id=1300万的放到1表中。设计这个方案时就是前期把表的范围设计好。通过id进行路由存放。
-
优点
我们小伙伴们想一下,此方案是不是有利于将来的扩容,不需要做数据迁移。即时再增加4张表,之前的4张表的范围不需要改变,id=12的还是在0表,id=1300万的还是在1表,新增的4张表他们的范围肯定是 大于 4000万之后的范围划分的。
-
缺点
有热点问题,我们想一下,因为id的值会一直递增变大,那这段时间的订单是不是会一直在某一张表中,如id=1000万 ~ id=2000万之间,这段时间产生的订单是不是都会集中到此张表中,这个就导致1表过热,压力过大,而其他的表没有什么压力。
3、总结:
hash取模方案:没有热点问题,但扩容迁移数据痛苦
range方案:不需要迁移数据,但有热点问题。
那有什么方案可以做到两者的优点结合呢?,即不需要迁移数据,又能解决数据热点的问题呢?
其实还有一个现实需求,能否根据服务器的性能以及存储高低,适当均匀调整存储呢?
三、方案思路
hash是可以解决数据均匀的问题,range可以解决数据迁移问题,那我们可以不可以两者相结合呢?利用这两者的特性呢?
我们考虑一下数据的扩容代表着,路由key(如id)的值变大了,这个是一定的,那我们先保证数据变大的时候,首先用range方案让数据落地到一个范围里面。这样以后id再变大,那以前的数据是不需要迁移的。
但又要考虑到数据均匀,那是不是可以在一定的范围内数据均匀的呢?因为我们每次的扩容肯定会事先设计好这次扩容的范围大小,我们只要保证这次的范围内的数据均匀是不是就ok了。
四、方案设计
我们先定义一个group组概念,这组里面包含了一些分库以及分表,如下图
上图有几个关键点:
1)id=0~4000万肯定落到group01组中
2)group01组有3个DB,那一个id如何路由到哪个DB?
3)根据hash取模定位DB,那模数为多少?模数要为所有此group组DB中的表数,上图总表数为10。为什么要去表的总数?而不是DB总数3呢?
4)如id=12,id%10=2;那值为2,落到哪个DB库呢?这是设计是前期设定好的,那怎么设定的呢?
5)一旦设计定位哪个DB后,就需要确定落到DB中的哪张表呢?
五、核心主流程
按照上面的流程,我们就可以根据此规则,定位一个id,我们看看有没有避免热点问题。
我们看一下,id在【0,1000万】范围内的,根据上面的流程设计,1000万以内的id都均匀的分配到DB_0,DB_1,DB_2三个数据库中的Table_0表中,为什么可以均匀,因为我们用了hash的方案,对10进行取模。
上面我们也提了疑问,为什么对表的总数10取模,而不是DB的总数3进行取模?我们看一下为什么DB_0是4张表,其他两个DB_1是3张表?
在我们安排服务器时,有些服务器的性能高,存储高,就可以安排多存放些数据,有些性能低的就少放点数据。如果我们取模是按照DB总数3,进行取模,那就代表着【0,4000万】的数据是平均分配到3个DB中的,那就不能够实现按照服务器能力适当分配了。
按照Table总数10就能够达到,看如何达到
上图中我们对10进行取模,如果值为【0,1,2,3】就路由到DB_0,【4,5,6】路由到DB_1,【7,8,9】路由到DB_2。现在小伙伴们有没有理解,这样的设计就可以把多一点的数据放到DB_0中,其他2个DB数据量就可以少一点。DB_0承担了4/10的数据量,DB_1承担了3/10的数据量,DB_2也承担了3/10的数据量。整个Group01承担了【0,4000万】的数据量。
注意:小伙伴千万不要被DB_1或DB_2中table的范围也是0~4000万疑惑了,这个是范围区间,也就是id在哪些范围内,落地到哪个表而已。
上面一大段的介绍,就解决了热点的问题,以及可以按照服务器指标,设计数据量的分配。
六、如何扩容
其实上面设计思路理解了,扩容就已经出来了;那就是扩容的时候再设计一个group02组,定义好此group的数据范围就ok了。
因为是新增的一个group01组,所以就没有什么数据迁移概念,完全是新增的group组,而且这个group组照样就防止了热点,也就是【4000万,5500万】的数据,都均匀分配到三个DB的table_0表中,【5500万~7000万】数据均匀分配到table_1表中。
七、系统设计
思路确定了,设计是比较简单的,就3张表,把group,DB,table之间建立好关联关系就行了。
group和DB的关系
table和db的关系
上面的表关联其实是比较简单的,只要原理思路理顺了,就ok了。小伙伴们在开发的时候不要每次都去查询三张关联表,可以保存到缓存中(本地jvm缓存),这样不会影响性能。
一旦需要扩容,小伙伴是不是要增加一下group02关联关系,那应用服务需要重新启动吗?
简单点的话,就凌晨配置,重启应用服务就行了。但如果是大型公司,是不允许的,因为凌晨也有订单的。那怎么办呢?本地jvm缓存怎么更新呢?
其实方案也很多,可以使用用zookeeper,也可以使用分布式配置,这里是比较推荐使用分布式配置中心的,可以将这些数据配置到分布式配置中心去
到此为止,整体的方案介绍结束,希望对小伙伴们有所帮助。谢谢!!!
这边隐含了一个关键点,那就是路由key(如:id)的值是非常关键的,要求一定是有序的,自增的,这个就涉及到分布式唯一id的方案.
出处:https://mp.weixin.qq.com/s/pGcDXG6kS3U86HZz7K5fgg
简略版分析分库分表:
分库分表,做到永不迁移数据和避免热点的方法: 基础: 1、数据拆分方式:垂直拆分,水平拆分。 2、垂直拆分:原来就一个数据库,数据量一大了,就拆分为多个数据库。 3、水平拆分:原来是t_order表,拆分成t_order_1、t_order_2、t_order_3、t_order_4。 4、Mysql单表存储推荐是百万级,尽量别到千万级。 分库分表方案: 1、常用的方案:hash取模、range范围方案,分库分表方案最主要的就是路由算法,把路由的key按照指定的算法进行路由存放。 2、hash取模方案(无热点问题,扩容困难) (一)、首先预估一下总数据量m,设定每张表的最大数据量n,m/n=z 是表个数。 (二)、hash方案就是对指定的路由key(如:id)对z进行取模,"t_order_"+id%z 是表名字。 (三)、优缺点:优点是数据均匀的分布在每张表中,不会有热点问题;缺点是数据的迁移或者扩容会很麻烦。 3、range范围方案(不需要迁移数据,有热点问题) (一)、range方案是以范围进行数据拆分:id=50在0~1000的在t_order_0表、id=1050在1000~2000的t_order_1表等。 (二)、优缺点:优点是扩容方便,不需要数据迁移;缺点是id在0-1000时,t_order_0会很忙,t_order_1,t_order_2...t_order_n...都没有数据的访问,一段时间只有一个热点表。 4、range和hash组合方案 (一)、设计是比较简单的,就三张表,把group,db,table之间建立好关联关系。 group表字段:group_id,group_name,start_id,end_id db表字段:db_id,db_name,group_id,hash_value group和db的关系表字段:table_id,table_name,db_id,start_id,end_id 分库分表就会带来各种join组合条件的分页查询问题,怎样解决分页查询问题,很有挑战性。 1.事务问题: (1)、分布式事务 (2)、通过应用程序与数据库共同控制实现事务 方案一:使用分布式事务 优点:交由数据库管理,简单有效 缺点:性能代价高,特别是shard(分片)越来越多时 方案二:由应用程序和数据库共同控制 原理:将一个跨多个数据库的分布式事务分拆成多个仅处 于单个数据库上面的小事务,并通过应用程序来总控 各个小事务。 优点:性能上有优势 缺点:需要应用程序在事务控制上做灵活设计。如果使用 了spring的事务管理,改动起来会面临一定的困难。 2.跨节点Join的问题 只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。 3.跨节点的count,order by,group by以及聚合函数问题 解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。