二叉树的遍历

1.二叉树:二叉树是n(n〉=0)个节点的有限集,他或者是空集(n=0),或者是由一个根节点及两棵互不相交的、分别称作这个根节点左子树和右子树的二叉树组成。

2.二叉树不是树的特例

(1)二叉树与无序树不同
 二叉树中,每个结点最多只能有两棵子树,并且有左右之分。二叉树并非是树的特殊情形,它们是两种不同的数据结构。    

(2)二叉树与度数为2的有序树不同
 在有序树中,虽然一个结点的孩子之间是有左右次序的,但是若该结点只有一个孩子,就无须区分其左右次序。而在二叉树中,即使是一个孩子也有左右之分。    

           
3.二叉树的遍历分为:二叉树的深度优先遍历和二叉树的广度优先遍历(转载自http://www.blogjava.net/fancydeepin/archive/2013/02/03/395073.html

二叉树的深度优先遍历

深度优先搜索算法(Depth First Search),是搜索算法的一种。是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。

当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。
如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。


如右图所示的二叉树:

A 是第一个访问的,然后顺序是 B、D,然后是 E。接着再是 C、F、G。

那么,怎么样才能来保证这个访问的顺序呢?

分析一下,在遍历了根结点后,就开始遍历左子树,最后才是右子树。

因此可以借助堆栈的数据结构,由于堆栈是后进先出的顺序,由此可以先将右子树压栈,然后再对左子树压栈,

这样一来,左子树结点就存在了栈顶上,因此某结点的左子树能在它的右子树遍历之前被遍历。

 

 

 

 

广度优先搜索算法(Breadth First Search),又叫宽度优先搜索,或横向优先搜索。

是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。

如右图所示的二叉树,A 是第一个访问的,然后顺序是 B、C,然后再是 D、E、F、G。

那么,怎样才能来保证这个访问的顺序呢?

借助队列数据结构,由于队列是先进先出的顺序,因此可以先将左子树入队,然后再将右子树入队。

这样一来,左子树结点就存在队头,可以先被访问到。

 

 

 

D:访问根结点,L:遍历根结点的左子树,R:遍历根结点的右子树。

给定一棵二叉树的前序遍历序列和中序遍历序列可以惟一确定一棵二叉树。

二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。

深度优先遍历二叉树

1. 中序遍历(LDR)的递归算法:

若二叉树为空,则算法结束;否则:

    中序遍历根结点的左子树;

    访问根结点;

    中序遍历根结点的右子树。

2. 前序遍历(DLR)的递归算法:

若二叉树为空,则算法结束,否则:

    访问根结点;

    前序遍历根结点的左子树;

    前序遍历根结点的右子树。

3. 后序遍历(LRD)的递归算法:

若二叉树为空,则算法结束,否则:

    后序遍历根结点的左子树;

    后序遍历根结点的右子树;

    访问根结点。

 

广度优先遍历二叉树

广度优先周游二叉树(层序遍历)是用队列来实现的,从二叉树的第一层(根结点)开始,自上至下逐层遍历;在同一层中,按照从左到右的顺序对结点逐一访问。

按照从根结点至叶结点、从左子树至右子树的次序访问二叉树的结点。算法:

    1初始化一个队列,并把根结点入列队;

    2当队列为非空时,循环执行步骤3到步骤5,否则执行6;

    3出队列取得一个结点,访问该结点;

    4若该结点的左子树为非空,则将该结点的左子树入队列;

    5若该结点的右子树为非空,则将该结点的右子树入队列;

    6结束。

 

非递归深度优先遍历二叉树

栈是实现递归的最常用的结构,利用一个栈来记下尚待遍历的结点或子树,以备以后访问,可以将递归的深度优先遍历改为非递归的算法。

1. 非递归前序遍历:遇到一个结点,就访问该结点,并把此结点推入栈中,然后下降去遍历它的左子树。遍历完它的左子树后,从栈顶托出这个结点,并按照它的右链接指示的地址再去遍历该结点的右子树结构。

2. 非递归中序遍历:遇到一个结点,就把它推入栈中,并去遍历它的左子树。遍历完左子树后,从栈顶托出这个结点并访问之,然后按照它的右链接指示的地址再去遍历该结点的右子树。

3. 非递归后序遍历:遇到一个结点,把它推入栈中,遍历它的左子树。遍历结束后,还不能马上访问处于栈顶的该结点,而是要再按照它的右链接结构指示的地址去遍历该结点的右子树。遍历遍右子树后才能从栈顶托出该结点并访问之。另外,需要给栈中的每个元素加上一个特征位,以便当从栈顶托出一个结点时区别是从栈顶元素左边回来的(则要继续遍历右子树),还是从右边回来的(该结点的左、右子树均已周游)。特征为Left表示已进入该结点的左子树,将从左边回来;特征为Right表示已进入该结点的右子树,将从右边回来。

4. 简洁的非递归前序遍历:遇到一个结点,就访问该结点,并把此结点的非空右结点推入栈中,然后下降去遍历它

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值