rate 和 irate 函数对比
函数定义和目的
rate:
- 计算指标在指定时间范围内的平均增长速率(每秒)。
- 适用场景:长时间趋势分析,平滑短期波动。
irate:
- 计算指标在指定时间范围内的即时(最近的两个数据点)增长速率(每秒)。
- 适用场景:即时监控短期波动,快速响应变化。
具体示例
假设我们有一个计数器 http_requests_total
,记录了应用程序收到的 HTTP 请求总数,时间序列如下:
- T1: http_requests_total{instance=“localhost:9090”, method=“GET”} = 100
- T2 (2分钟后): http_requests_total{instance=“localhost:9090”, method=“GET”} = 150
- T3 (1分钟后): http_requests_total{instance=“localhost:9090”, method=“GET”} = 200
- T4 (3分钟后): http_requests_total{instance=“localhost:9090”, method=“GET”} = 260
我们将用 rate 和 irate 分别计算过去 5 分钟内的速率。
rate 计算过程
- 过去5分钟里的所有数据点:T2 (150), T3 (200), T4 (260)
- 总变化量:260 - 150 = 110
- 时间间隔:5分钟 = 300秒
- 平均速率:110 / 300 ≈ 0.3667 请求每秒
rate 使用了时间窗口内的所有数据点,提供了一个平滑的平均速率,反映了整个时间段内的趋势。
irate 计算过程
- 过去5分钟里的最近两个数据点:T3 (200) 和 T4 (260)
- 总变化量:260 - 200 = 60
- 时间间隔:3分钟 = 180秒
- 即时速率:60 / 180 ≈ 0.3333 请求每秒
irate 只考虑了最近的两个数据点,计算出当前时间的即时速率,反映了较短期的速率变化。
总结对比
特性 | rate | irate |
---|---|---|
数据点使用 | 整个时间窗口内的所有数据点 | 时间窗口内的最近两个数据点 |
结果特性 | 适合趋势分析和平滑波动 | 适合峰值检测和快速响应 |
波动性 | 结果较为平滑,对短期波动不敏感 | 对短期波动较为敏感,结果可能有较大幅度变化 |
使用建议
- rate:观察长时间段内的性能和趋势,理解系统的一般行为模式。
- irate:观察系统的瞬时性能,快速回应突发事件或监控短期波动。