prometheus 中 rate 和 irate 函数对比

rate 和 irate 函数对比

函数定义和目的

rate:

  • 计算指标在指定时间范围内的平均增长速率(每秒)。
  • 适用场景:长时间趋势分析,平滑短期波动。

irate:

  • 计算指标在指定时间范围内的即时(最近的两个数据点)增长速率(每秒)。
  • 适用场景:即时监控短期波动,快速响应变化。

具体示例

假设我们有一个计数器 http_requests_total,记录了应用程序收到的 HTTP 请求总数,时间序列如下:

  • T1: http_requests_total{instance=“localhost:9090”, method=“GET”} = 100
  • T2 (2分钟后): http_requests_total{instance=“localhost:9090”, method=“GET”} = 150
  • T3 (1分钟后): http_requests_total{instance=“localhost:9090”, method=“GET”} = 200
  • T4 (3分钟后): http_requests_total{instance=“localhost:9090”, method=“GET”} = 260

我们将用 rate 和 irate 分别计算过去 5 分钟内的速率。

rate 计算过程

  1. 过去5分钟里的所有数据点:T2 (150), T3 (200), T4 (260)
  2. 总变化量:260 - 150 = 110
  3. 时间间隔:5分钟 = 300秒
  4. 平均速率:110 / 300 ≈ 0.3667 请求每秒

rate 使用了时间窗口内的所有数据点,提供了一个平滑的平均速率,反映了整个时间段内的趋势。

irate 计算过程

  1. 过去5分钟里的最近两个数据点:T3 (200) 和 T4 (260)
  2. 总变化量:260 - 200 = 60
  3. 时间间隔:3分钟 = 180秒
  4. 即时速率:60 / 180 ≈ 0.3333 请求每秒

irate 只考虑了最近的两个数据点,计算出当前时间的即时速率,反映了较短期的速率变化。

总结对比

特性rateirate
数据点使用整个时间窗口内的所有数据点时间窗口内的最近两个数据点
结果特性适合趋势分析和平滑波动适合峰值检测和快速响应
波动性结果较为平滑,对短期波动不敏感对短期波动较为敏感,结果可能有较大幅度变化

使用建议

  • rate:观察长时间段内的性能和趋势,理解系统的一般行为模式。
  • irate:观察系统的瞬时性能,快速回应突发事件或监控短期波动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值