ddupyy
码龄8年
关注
提问 私信
  • 博客:130,884
    130,884
    总访问量
  • 7
    原创
  • 880,798
    排名
  • 45
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2017-03-16
博客简介:

努力努力再努力的博客

查看详细资料
个人成就
  • 获得60次点赞
  • 内容获得5次评论
  • 获得357次收藏
创作历程
  • 8篇
    2019年
  • 2篇
    2017年
成就勋章
TA的专栏
  • 机器学习
    5篇
  • 生信
    2篇
  • 数据库
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

mysql报错: group by --SELECT list is not in GROUP BY clause and contains nonaggregated column

用group by 查询时抛出如下异常:Expression #3 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'userinfo.t_long.user_name' which is not functionally dependent on columns in GROUP BY cla...
转载
发布博客 2019.05.08 ·
364 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

聚类的评价指标---all

1、基于互信息的评价指标NMI比较详细的解释,可以参见这篇博客:https://blog.csdn.net/tyh70537/article/details/771458432、所有的评价指标参见这篇博客https://blog.csdn.net/liuy9803/article/details/80762862...
原创
发布博客 2019.02.28 ·
886 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

中心性的度量---度中心性,间接中心性,紧密中心性,特征向量中心性

网络分析中,经常会用到中心性这个概念。通常在中心性的分析角度上有两种出发点:中心度和中心势。&npsb;&npsb;中心度表示一个节点在网络中处于核心地位的程度;中心势表示整个图的紧密程度。换句话说,度表示单个节点的性质,而势表示整个图的性质。目前有四种中心性的分析方法,分别是:度中心性(degree centrality),间接中心性(betweenness centrali...
原创
发布博客 2019.02.27 ·
67364 阅读 ·
30 点赞 ·
5 评论 ·
214 收藏

归一化(normalization)、标准化(standarization)

归一化(normalization)、标准化(standarization)   在机器学习领域,不同的评价指标(及特征向量中的不同特征就是所描述的不同评价指标),往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据的标准化处理,已解决数据指标之间的可比性。原始数据经过数据标准化处理之后,各指标处于同一数量级,适合进行综合对...
原创
发布博客 2019.02.25 ·
5365 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏

机器学习的评价指标-Rand index

下面这篇博客中分类别 介绍了很多机器学习方法的评价指标,比较全面:http://www.cnblogs.com/zhaokui/p/ml-metric.html一、聚类结果的评价指标1、Rand index 或者 Rand measure(兰德指数)维基百科比较详细:https://en.wikipedia.org/wiki/Rand_index兰德指数需要给定实际类别信息C,假设K是聚...
原创
发布博客 2019.02.21 ·
11431 阅读 ·
2 点赞 ·
0 评论 ·
23 收藏

关于机器学习的一些思考 周志华

1、在图像、视频、语音这些对象任务上,深度神经网络表现良好;而在很多其他任务上,比如数据分析上(eg订票订旅馆分析),深度神经网络的表现并没有那么好,传统的机器学习技术可能表现更好。“没有免费的午餐定理”,也就是任何一个模型可能只有一部分任务是适用的,另外一些任务是不适用的。2、目前深度模型就是深度神经网络,更确切地说,是由多层参数化可微的非线性模块搭建起来的模型,而他本身能够用BP算法(ba...
原创
发布博客 2019.01.28 ·
507 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

单细胞RNAseq的生物分析

一、聚类分析  scRNA-seq分析的最经常应用之一是基于转录谱的细胞类型(cell-type)的新发现和注释。从计算角度来看,这就是一个困难的无监督聚类问题。也就是说,我们需要在没有先验知识标签的情况下,根据转录组的相似性来识别细胞群。此外在大多数情况下,我们无法预先知道cluster的数量。而且由于高水平的技术噪声(技术和生物上)和大量的维度(eg基因数),这个问题变得...
原创
发布博客 2019.01.18 ·
8489 阅读 ·
9 点赞 ·
0 评论 ·
38 收藏

单细胞RNA-seq分析

一、单细胞single cell RNA-seq简介1、Bulk RNA-seq(大量RNA-seq)Measures the average expression level for each gene across a largepopulation of input cellsUseful for quantifying expression signatures from ens...
原创
发布博客 2019.01.15 ·
32148 阅读 ·
16 点赞 ·
0 评论 ·
97 收藏

贝叶斯网络

1、D-separation D-separation是贝叶斯网络中十分重要的一个概念,是一种用于判断变量是否条件独立的图形化方法。在搜索各类文章之后,发现这篇博客讲的很好https://my.oschina.net/dillan/blog/134011,从理论到例子,深入浅出,很好理解。 2、Independent-map 假设贝叶斯网络为G,概率分布为P。G是P的一个I
原创
发布博客 2017.09.08 ·
3207 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

使用LaTeX语法编写数学公式

此篇博客中记录了数学公式编辑的详细内容,值得收藏。http://blog.csdn.net/u013346007/article/details/52502855
转载
发布博客 2017.09.07 ·
418 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏