回归是一种预测建模技术,用于研究因变量和非因变量之间的关系。
多项式回归
它是一种回归分析形式,显示自变量 x 与因变量 y 之间的关系,因变量 y 在 x 中以 n 次多项式建模。
例子
以下是计算多项式回归算法的 C 程序 -
#include<math.h>
#include<stdio.h>
#include<conio.h>
main(){
int i,j,k,m,n;
float x[20],y[20],u,a[10],c[20][20],power,r;
printf("enter m,n:");
scanf("%d%d",&m,&n);
for(i=1;i<=n;i++){
printf("enter values of x and y");
scanf("%f%f",&x[i],&y[i]);
}
for(j=1;j<=m+1;j++)
for(k=1;k<=m+1;k++){
c[j][k]=0;
for(i=1;i<=n;i++){
power=pow(x[i],j+k-2);
c[j][k]=c[j][k]+power;
}
}
for(j=1;j<=m+1;j++){
c[j][m+2]=0;
for(i=1;i<=n;i++){
r=pow(x[i],j-1);
c[j][m+2]=c[j][m+2]+y[i]*r;
}
}
for(i=1;i<=m+1;i++){
for(j=1;j<=m+2;j++){
printf("%.2f\t",c[i][j]);
}
printf("
");
}
for(k=1;k<=m+1;k++)
for(i=1;i<=m+1;i++){
if(i!=k){
u=c[i][k]/c[k][k];
for(j=k;j<=m+2;j++){
c[i][j]=c[i][j]-u*c[k][j];
}
}
}
for(i=1;i<=m+1;i++){
a[i]=c[i][m+2]/c[i][i];
printf("a[%d]=%f
",i,a[i]);
}
getch();
}
输出
当执行上述程序时,它会产生以下结果 -
enter m,n:4 5
enter values of x and y1 1
enter values of x and y2 3
enter values of x and y1 2
enter values of x and y1 2
enter values of x and y1 1
5.00 6.00 8.00 12.00 20.00 9.00
6.00 8.00 12.00 20.00 36.00 12.00
8.00 12.00 20.00 36.00 68.00 18.00
12.00 20.00 36.00 68.00 132.00 30.00
20.00 36.00 68.00 132.00 260.00 54.00
a[1]=1.750000
a[2]=-2.375000
a[3]=2.000000
a[4]=0.500000
a[5]=-0.375000