目录
人工智能不是我们的未来,而是我们当下的现实。零售、银行和金融、安全、治理、医疗保健和工业只是每天使用人工智能的一些领域。我们正在接近人工智能生成的内容和人类生成的内容变得无法区分的地步。自然语言处理(NLP)正在发展到机器和人类之间的交互类似于两个人之间的交互的水平。这为政府、企业家以及金融和卫生部门的公司提供了新的机会。
为了简化机器学习(ML)任务,Intel和红帽正在开发新的解决方案。红帽OpenShift*数据科学等产品增强了数据挖掘、模型部署、训练、流程自动化和数据传输。为了提高性能,Intel同时推出了新技术和加速器,包括Intel®高级矩阵扩展(Intel® AMX)。
问题陈述
人工智能为企业提供了可以以各种方式使用的业务优势。NLP可以通过有效地分析大型文本数据来帮助检测欺诈。它可以执行情绪分析并支持医疗保健。NLP使人机交互的形式更加自然。本文介绍了如何使用AI模型来回答有关公司的问题。使用智能助手通过减少响应时间和减少服务客户所需的人数来增加客户的便利性,从而降低成本。
方法
在这种情况下,目标是回答客户关于产品、价格、销售和公司本身的问题。以下示例显示了使用可以与客户交互的开源组件设置聊天机器人的简单方法。通过一些编程和开发,它可以扩展并转换为功能齐全的生产就绪应用程序,以支持业务。
为了实现这一目标,我们使用了BERT(来自Transformer的双向编码器表示)和开源的BERT问答Python*演示。以下示例使用带有OpenVINO*工具包Operator的红帽OpenShift数据科学平台,以及使用带有IntelAMX的第4代Intel®Xeon®可扩展处理器来提供更快的响应。
技术
红帽OpenShift数据科学
红帽OpenShift数据科学是一项面向智能应用数据科学家和程序员的服务,可作为自我管理或托管的云平台使用。它提供了一个完全受支持的环境,在实际环境中部署之前,可以快速开发、训练和测试ML模型。团队可以在容器(无论是在本地、公有云、数据中心还是边缘)的生产环境中部署ML模型,这要归功于它们可以轻松地从红帽OpenShift数据科学导出到其他平台。
使用红帽OpenShift数据科学ML版有很多好处。该平台包括广泛的商用合作伙伴和开源工具和框架,例如Jupyter Notebooks*、TensorFlow*、PyTorch和OpenVINO,供数据科学家在其工作流程中使用。红帽OpenShift数据科学提供安全且可扩展的环境。
Intel ® AMX
Intel AMX 是一种新的内置加速器,可提高CPU上深度学习训练和推理的性能。它加速了AI操作并将性能提高了3倍。它非常适合NLP、推荐系统和图像识别等工作负载。第四代Intel Xeon可扩展处理器的性能可以使用Intel® oneAPI 深度神经网络库(oneDNN)进行微调,该库是Intel® oneAPI工具套件的一部分,集成到TensorFlow和PyTorch AI框架以及Intel®发行版OpenVINO工具套件中。这些工具包可与红帽OpenShift数据科学配合使用。
实现示例
这个例子使用一个简单的网站来描述超级鞋!储存为基础(图1)。零售商可以使用自己的网站或生成包含有关公司重要信息的文档。以下示例展示了如何开发一个可以回答问题的简单聊天机器人,从而从客户的角度缩短响应时间。
图1.我们示例中使用的部分网站
要开始创建聊天机器人,请为Red Hat OpenShift集群准备一个镜像注册表。此示例还需要存储来提供持久卷(例如,OpenShift Data Foundation)和Node Feature Discovery Operator来检测支持Intel AMX的CPU。内核在运行时检测Intel AMX,因此无需单独启用和配置它。检查节点的标签以验证Intel AMX 是否可用:
feature.node.kubernetes.io/cpu-cpuid.AMXBF16=true
feature.node.kubernetes.io/cpu-cpuid.AMXINT8=true
feature.node.kubernetes.io/cpu-cpuid.AMXTILE=true
Red Hat OpenShift Data Science和OpenVINO Toolkit Operator必须从OperatorHub安装,可通过OpenShift Container Platform Web控制台获得(图2)。默认设置就足够了,但请保持正确的安装顺序:首先是OpenShift Data Science,其次是OpenVINO Toolkit Operator。然后,确保这两个运算符都列在redhat-ods-applications项目的 Installed Operators 选项卡中,并且状态为Succeeded。
图2.显示已安装操作员状态的OpenShift*控制台屏幕截图
OpenVINO工具套件运算符需要额外的配置。确保已选择redhatodsapplications项目。单击OpenVINO Toolkit Operator,然后选择 Notebook 选项卡。现在,使用默认设置创建一个新笔记本。完成这些步骤后,请从主菜单转到“生成”>“生成”,以验证openvino-notebooks-v2022.3-1生成是否已完成。
使用右上角的菜单转到 Red Hat OpenShift Data Science 仪表板(图3)。
图3.OpenShift*托管服务菜单
在Red Hat OpenShift Data Science界面中,选择Applications > Enabled选项卡。使用OpenVINO工具套件v2022.3镜像启动Jupyter Notebook*应用程序。将容器大小更改为大(图 4)。
图4.在红帽OpenShift*数据科学仪表板中创建Jupyter Notebook*
在Launcher窗口中选择 Terminal(图 5)。
图5.启动器窗口
克隆Open Model Zoo GitHub存储库,其中包含演示的源代码:
git clone --recurse-submodules https://github.com/openvinotoolkit/open_model_zoo.git
要查看所有编译的指令并控制Intel AMX的使用,您可以选择设置ONEDNN_VERBOSE环境变量:
export ONEDNN_VERBOSE=1
如前所述,此示例基于BERT问答Python演示。但是,它使用BERT-large而不是BERT-small。
在open_model_zoo/demos/bert_question_answering_demo/python目录下,有一个models.lst文件,其中包含demo支持的模型列表,可以通过以下命令下载它们:
omz_downloader --list models.lst
正如你所看到的,使用红帽OpenShift数据科学最重要的优势之一是内置了所有必要的工具(如上面使用的模型下载器)和Python包!借助OpenVINO Toolkit Operator,您可以避免安装组件和准备开发环境的漫长、繁琐且容易出错的过程。
下载模型后,我们就可以运行我们的第一个聊天机器人了!让我们调用脚本:
python3 bert_question_answering_demo.py --vocab=/opt/app-root/src/open_model_zoo/demos/bert_question_answering_demo/python/intel/bert-large-uncased-whole-word-masking-squad-int8-0001/vocab.txt --model=/opt/app-root/src/open_model_zoo/demos/bert_question_answering_demo/python/intel/bert-large-uncased-whole-word-masking-squad-int8-0001/FP32-INT8/bert-large-uncased-whole-word-masking-squad-int8-0001.xml --input_names="input_ids,attention_mask,token_type_ids" --output_names="output_s,output_e" --input="https://grabuszynski.com/myshoesemporium.html" -c
零售商可以使用自己网站中的示例,而不是将示例页面作为输入传递。现在,聊天机器人可以回答有关公司及其产品的问题(图6)。
图6.可以提出的问题示例
如果设置ONEDNN_VERBOSE为1,您应该会在日志中看到avx_512_core_amx,确认正在使用Intel AMX指令:
onednn_verbose,info,cpu,isa:Intel AVX-512 with float16, Intel DL Boost and bfloat16 support and Intel AMX with bfloat16 and 8-bit integer support
可以扩展此示例。可以使用模型服务器为模型提供服务。提供易于使用和用户友好的界面的应用程序将是该项目之上的一颗樱桃。
结束语
红帽和Intel不断致力于人工智能领域的新解决方案、技术和改进。本文演示了红帽OpenShift数据科学如何结合OpenVINO工具套件和Intel AMX加速来改变零售业。在聊天机器人解决方案中将这些尖端技术与BERT模型结合使用,零售商可以:
- 降低客户服务成本
- 通过缩短响应时间提高客户满意度
- 潜在地增加销售额
借助红帽OpenShift数据科学和Intel AMX加速的综合优势,零售商可以快速处理和分析海量数据,从而做出更好的决策并优化运营。最终,这种技术融合为零售商提供了在瞬息万变的市场环境中保持竞争力所需的资源。
https://www.codeproject.com/Articles/5372209/Boosting-Business-with-AI