C# OnnxRuntime Diffusion-Low-Light 低光照图像增强

目录

说明

效果

模型信息

项目

代码


 

说明

官网地址:

https://github.com/JianghaiSCU/Diffusion-Low-Light

图片

代码实现参考:

https://github.com/hpc203/Diffusion-Low-Light-onnxrun

效果

图片

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 192, 320]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 3, 192, 320]
---------------------------------------------------------------

项目

图片

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;
 
namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }
 
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat result_image;
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;
        int inpHeight, inpWidth;
 
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }
 
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
 
            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            Application.DoEvents();
 
            //读图片
            image = new Mat(image_path);
            int cols = image.Cols;
            int rows = image.Rows;
 
            Mat dstimg = new Mat();
            Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
            dstimg.ConvertTo(dstimg, MatType.CV_32FC3, 1 / 255.0f);
 
            //输入Tensor
            input_tensor = new DenseTensor<float>(Common.ExtractMat(dstimg), new[] { 1, 3, inpHeight, inpWidth });
 
            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));
 
            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;
 
            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();
 
            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();
 
            int[] out_shape = result_tensors.Dimensions.ToArray();
            int out_h = out_shape[2];
            int out_w = out_shape[3];
            float[] pred = result_tensors.ToArray();
 
            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];
 
            Array.Copy(pred, temp_b, out_h * out_w);
            Array.Copy(pred, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(pred, out_h * out_w * 2, temp_r, 0, out_h * out_w);
 
            int channel_step = out_h * out_w;
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_b);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_g);
            Mat rmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_r);
 
            bmat *= 255.0f;
            gmat *= 255.0f;
            rmat *= 255.0f;
 
            Mat[] channel_mats = new Mat[] { rmat, gmat, bmat };
            dstimg = new Mat();
            Cv2.Merge(channel_mats.ToArray(), dstimg);
            dstimg.ConvertTo(dstimg, MatType.CV_8UC3);
 
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(cols, rows));
 
            pictureBox2.Image = new Bitmap(dstimg.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
 
            button2.Enabled = true;
 
        }
 
        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/diffusion_low_light_1x3x192x320.onnx";
 
            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
 
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);
 
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();
 
            image_path = "test_img/1.png";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
 
            inpHeight = 192;
            inpWidth = 320;
 
        }
 
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
 
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }
 
        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }
 
                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

引入地址 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值