poj_2104K-th Number

K-th Number
Time Limit:20000MS Memory Limit:65536K
Total Submissions:31646 Accepted:9771
Case Time Limit:2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
The second line contains n different integer numbers not exceeding 10 9by their absolute values --- the array for which the answers should be given.
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3
 
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
#pragma warning(disable : 4996)
const int MAXN = 100010;
#define mid ((l + r) >> 1)
int t[20][MAXN],sum[20][MAXN];
int as[MAXN];
//以下为查找区间第k小划分树
void build(int p,int l,int r)
{
	int lm = 0, i, ls = l, rs = mid + 1;//lm表示应被放入左子树且与中位数相等的数有多少个,ls为左子树的起始位置,rs为右子树的起始位置
	for(i = mid; i >= l; i--) //求lm
	{
		if(as[i] == as[mid])
		{
			lm++;
		}
		else
		{
			break;
		}
	}
	for(i = l; i <= r; i++)
	{
		if(i == l)//这里要特殊讨论
		{
			sum[p][i] = 0;
		}
		else
		{
			sum[p][i] = sum[p][i-1];
		}
		if(t[p][i] == as[mid])//若与中位数相等则判断是否应该被放入左子树
		{
			if(lm != 0)
			{
				lm--;
				sum[p][i]++;
				t[p+1][ls++] = t[p][i];
			}
			else
			{
				t[p+1][rs++] = t[p][i];
			}
		}
		else if(t[p][i] < as[mid])//查找区间第K大即为>
		{
			sum[p][i]++;
			t[p+1][ls++]=t[p][i];
		}
		else
		{
			t[p+1][rs++] = t[p][i];
		}
	}
	if(l==r)
	{
		return;
	}
	build(p + 1, l, mid);
	build(p + 1, mid + 1, r);
}
int query(int p, int l, int r, int ql, int qr, int k)
{
	int s, ss;//s表示l到ql-1的区间内放入左子树的个数,ss表示区间[ql,qr]被放入左子树的个数
	if(l == r)//找到所求的数
	{
		return t[p][l];
	}
	if(ql == l)
	{
		s = 0, ss = sum[p][qr];
	}
	else
	{
		s = sum[p][ql-1], ss = sum[p][qr] - s;
	}
	if(k<=ss)//要找的数在左子树中
	{
		return query(p + 1, l, mid, l + s, l + sum[p][qr] - 1, k);
	}
	else//要找的数在右子树中
	{
		return query(p + 1, mid + 1, r, mid + 1 - l + ql - s, mid + 1 - l + qr - sum[p][qr], k - ss);
	}
}

int main()
{
	freopen("in.txt", "r", stdin);
	int n, m, x, y, z;
	scanf("%d %d", &n, &m);
	for (int i = 1; i <= n; i++)
	{
		scanf("%d", &as[i]);
		t[0][i] = as[i];
	}
	sort(as + 1, as + n + 1);
	build(0, 1, n);
	while (m--)
	{
		scanf("%d %d %d", &x, &y, &z);
		printf("%d\n", query(0, 1, n, x, y, z));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值