Range Minimum Query and Lowest Common Ancestor[翻译]

Range Minimum Query and Lowest Common Ancestor

【原文见http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor

作者: By danielp
Topcoder Member
翻译: 农夫三拳@seu

Introduction
Notations
Range Minimum Query (RMQ)
Trivial algorithms for RMQ
A <O(N), O(sqrt(N))> solution
Sparse Table (ST) algorithm
Segment Trees
Lowest Common Ancestor (LCA)
A <O(N), O(sqrt(N))> solution
Another easy solution in <O(N logN, O(logN)>
Reduction from LCA to RMQ
From RMQ to LCA
An <O(N), O(1)> algorithm for the restricted RMQ
Conclusion

Introduction

在一棵树中查找一对结点的最近公共祖先(LCA)的问题在20世纪末期已经被仔细的研究过了,并且它现在已经成为算法中图论的基本算法了。这个问题之所以有趣并不是因为处理它的算法很有技巧,而是因为它在字符串处理和生物学计算中的广泛应用,例如,当LCA和后缀树或者其他树形结构在一起使用时。Harel and Tarjan是首先深入研究这个问题的人,他们得出:在对输入树LCA进行线性处理后,查询可以在常数时间内得到答案。他们的工作已经得到了广泛的延伸,这篇教程将展示一些有趣的方法,而它们还也可以用在其他的问题上。


让我们考虑一个不太抽象的LCA的例子:生命树。地球上当前的居住者是由其他物种进化而来已经是一个不争的事实。这种进化结构可以表示成一棵树,其中节点表示物种,而它的孩子结点表示从该物种直接进化得到的物种。现在通过在树中查找一些结点的LCA把具有相似特征的物种划分成组,我们可以找出两个物种共同的祖先,并且我们可以知道它们所拥有的相似特征是来自于那个祖先。

Range Minimum Query(RMQ)被用在数组中用来查找两个指定索引中具有最小值的元素的位置。我们后面将会看到LCA问题可以归约成一个带限制的RMQ问题,其中相邻的数组元素相差1。

尽管如此, RMQ并不是仅仅和LCA一起用的。当他们在和后缀数组(一个新的数据结构,它支持和后缀树同等效率的字符串查询,但是使用更少的内存且编码很简单)一起使用时,在字符串处理中扮演着相当重要的角色。

在这篇教程中,我们将首先讨论RMQ。我们将给出解决这个问题的多种方法--有一些速度比较慢但是容易编码,而其他的则更快。在第二部分我们将讨论LCA和RMQ之间的关系。首先我们先回顾一下不使用RMQ来解决LCA的两个简单方法;然后我们将指出RMQ和LCA问题其实是等价的;并且,最后,我们将看到RMQ问题怎样规约成它的限制版本,并且对于这个特殊情况给出一个最快的算法。


Notations
假设一个算法预处理时间为f(n),查询时间为g(n)。这个算法复杂度的标记为<f(n), g(n)>。我们将用RMQA(i, j)来表示数组中索引i和j之间最小值的位置。uv的离树T根结点最远的公共祖先用LCAT(u, v)表示。

Range Minimum Query(RMQ)
给定数组A[0, N-1]找出给定的两个索引间的最小值的位置。



Trivial algorithms for RMQ

对每一对索引(i, j),将RMQA(i, j)存储在M[0, N-1][0, N-1]表中。普通的计算将得到一个<O(N3), O(1)>复杂度的算法。尽管如此,通过使用一个简单的动态规划方法,我们可以将复杂度降低到<O(N2), O(1)>。预处理的函数和下面差不多:

 
void process1( int M[MAXN][MAXN], int A[MAXN], int N) { inti,j; for(i=0;i<N;i++) M[i][i]=i; for(i=0;i<N;i++) for(j=i+1;j<N;j++) if(A[M[i][j-1]]<A[j]) M[i][j]=M[i][j-1]; else M[i][j]=j; }
这个普通的算法相当的慢并且使用O(N2)的空间,对于大数据它是无法工作的。




An <O(N), O(sqrt(N))> solution

一个比较有趣的点子是把向量分割成sqrt(N)大小的段。我们将在M[0,sqrt(N)-1]为每一个段保存最小值的位置。 M可以很容易的在O(N)时间内预处理。下面是一个例子:


现在让我们看看怎样计算RMQA(i, j)。想法是遍历所有在区间中的sqrt(N)段的最小值,并且和区间相交的前半和后半部分。为了计算上图中的RMQA(2,7),我们应该比较A[2],A[M[1]],A[6]A[7],并且获得最小值的位置。可以很容易的看出这个算法每一次查询不会超过3 * sqrt(N)次操作。

这个方法最大的有点是能够快速的编码(对于TopCoder类型的比赛),并且你可以把它改成问题的动态版本(你可以在查询中间改变元素)。

Sparse Table (ST) algorithm

一个更好的方法预处理RMQ是对2k的长度的子数组进行动态规划。我们将使用数组M[0, N-1][0, logN]进行保存,其中M[i][j]是以i开始,长度为2j的子数组的最小值的索引。下面是一个例子



为了计算M[i][j]我们必须找到前半段区间和后半段区间的最小值。很明显小的片段有这2j - 1长度,因此递归如下:


预处理的函数如下:
 
void process2( int M[MAXN][LOGMAXN], int A[MAXN], int N) { inti,j; //initializeMfortheintervalswithlength1 for(i=0;i<N;i++) M[i][0]=i; //computevaluesfromsmallertobiggerintervals for(j=1;1<<j<=N;j++) for(i=0;i+(1<<j)-1<N;i++) if(A[M[i][j-1]]<A[M[i+(1<<(j-1))][j-1]]) M[i][j]=M[i][j-1]; else M[i][j]=M[i+(1<<(j-1))][j-1]; }

一旦我们预处理了这些值,让我们看看怎样使用它们去计算RMQA(i, j)。思路是选择两个能够完全覆盖区间[i..j]的块并且找到它们之间的最小值。设k = [log(j - i + 1)].。为了计算RMQA(i, j)我们可以使用下面的公式



So, the overall complexity of the algorithm is <O(N logN), O(1)>

Segment trees

为了解决RMQ问题我们也可以使用线段树。线段树是一个类似堆的数据结构,可以在基于区间数组上用对数时间进行更新和查询操作。我们用下面递归方式来定义线段树的[i, j]区间:

  • 第一个结点将保存区间[i, j]区间的信息
  • 如果i<j 左右的孩子结点将保存区间[i, (i+j)/2][(i+j)/2+1, j]的信息

注意具有N个区间元素的线段树的高度为[logN] + 1。下面是区间[0,9]的线段树:




线段树和堆具有相同的结构,因此我们定义x是一个非叶结点,那么左孩子结点为2*x,而右孩子结点2*x+1

使用线段树解决RMQ问题,我们应该使用数组M[1, 2 * 2[logN] + 1],这里M[i]保存结点i区间最小值的位置。初始时M的所有元素为-1。树应当用下面的函数进行初始化(be是当前区间的范围):

  
void initialize( int node, int b, int e, int M[MAXIND], int A[MAXN], int N) { if(b==e) M[node]=b; else { //computethevaluesintheleftandrightsubtrees initialize(2*node,b,(b+e)/2,M,A,N); initialize(2*node+1,(b+e)/2+1,e,M,A,N); //searchfortheminimumvalueinthefirstand //secondhalfoftheinterval if(A[M[2*node]]<=A[M[2*node+1]]) M[node]=M[2*node]; else M[node]=M[2*node+1]; } }

上面的函数映射出了这棵树建造的方式。当计算一些区间的最小值位置时,我们应当首先查看子结点的值。调用函数的时候使用node = 1,b = 0e = N-1

现在我们可以开始进行查询了。如果我们想要查找区间[i, j]中的最小值的位置时,我们可以使用下 一个简单的函数:

 
int query( int node, int b, int e, int M[MAXIND], int A[MAXN], int i, int j) { intp1,p2; //ifthecurrentintervaldoesn'tintersect //thequeryintervalreturn-1 if(i>e||j<b) return-1; //ifthecurrentintervalisincludedin //thequeryintervalreturnM[node] if(b>=i&&e<=j) returnM[node]; //computetheminimumpositioninthe //leftandrightpartoftheinterval p1=query(2*node,b,(b+e)/2,M,A,i,j); p2=query(2*node+1,(b+e)/2+1,e,M,A,i,j); //returnthepositionwheretheoverall //minimumis if(p1==-1) returnM[node]=p2; if(p2==-1) returnM[node]=p1; if(A[p1]<=A[p2]) returnM[node]=p1; returnM[node]=p2; }
你应该使用node = 1,b = 0e = N - 1来调用这个函数,因为分配给第一个结点的区间是[0, N-1]

可以很容易的看出任何查询都可以在O(log N)内完成。注意当我们碰到完整的in/out区间时我们停止了,因此数中的路径最多分裂一次。用线段树我们获得了<O(N), O(logN)>的算法。线段树非常强大,不仅仅是因为它能够用在RMQ上,

还因为它是一个非常灵活的数据结构,它能够解决动态版本的RMQ问题和大量的区间搜索问题。

Lowest Common Ancestor (LCA)

给定一棵树T和两个节点uv,找出uv的离根节点最远的公共祖先。下面是一个例子(这篇教程中所有的例子中树的根结点均为1):




An <O(N), O(sqrt(N))> solution

将输入分成同等大小的部分来解决RMQ问题是一个很有趣的方法。这个方法对LCA问题同样适用。大致思想是将树分成sqrt(H)个部分,其中H是树的高度。因此第一个段将包含0sqrt(H)-1层,第二个段则包sqrt(H)2*sqrt(H)-1层,依次下去。下面给出了样例中的树是如何被分割的:



现在,对于每一个结点,我们应该知道每一个段的在上一层中的祖先。我们将预处理这些值,并将他们存储在P[1, MAXN]中。下面是对于样例中的树的P数组内容(为了简化,对于在第一个段中的所有结点i,P[i]=1):



注意对于每一个段中的上面一部分,P[i]=T[i]。我们可以使用深度优先搜索对P进行预处理(T[i]是树中i结点的父亲结点,nr[sqrt(H)]L[i]是结点i所处的层的编号):

  
void dfs( int node, int T[MAXN], int N, int P[MAXN], int L[MAXN], int nr) { intk; //ifnodeissituatedinthefirst //sectionthenP[node]=1 //ifnodeissituatedatthebeginning //ofsomesectionthenP[node]=T[node] //ifnoneofthosetwocasesoccurs,then //P[node]=P[T[node]] if(L[node]<nr) P[node]=1; else if(!(L[node]%nr)) P[node]=T[node]; else P[node]=P[T[node]]; foreachsonkofnode dfs(k,T,N,P,L,nr); }

现在,我们可以很容易的进行查询了。为了找到LCA(x,y),我们首先找出它所在的段,然后再用普通的方法计算它。下面是代码:

 
int LCA( int T[MAXN], int P[MAXN], int L[MAXN], int x, int y) { //aslongasthenodeinthenextsectionof //xandyisnotonecommonancestor //wegetthenodesituatedonthesmaller //levercloser while(P[x]!=P[y]) if(L[x]>L[y]) x=P[x]; else y=P[y]; //nowtheyareinthesamesection,sowetriviallycomputetheLCA while(x!=y) if(L[x]>L[y]) x=T[x]; else y=T[y]; returnx; }

这个函数最多执行2 * sqrt(H)次操作。通过使用这个方法,我们得到了<O(N), O(sqrt(H))>的算法,这里H指的是树的高度。在最坏的情况下H=N,因此总的复杂度为<O(N), O(sqrt(N))>。这个算法的主要好处是易于编码(Division1中的程序员应该在15分钟内完成这段代码)。

Another easy solution in <O(N logN, O(logN)>

如果我们对这个需要一个更快的解决方法,我们可以使用动态规划。首先我们构建一张表P[1,N][1,logN],这里P[i][j]指的是结点i的第2j个祖先。为了计算这个值,我们可以使用下面的递归:



预处理的函数如下:
void process3( int N, int T[MAXN], int P[MAXN][LOGMAXN])
{
inti,j;

//weinitializeeveryelementinPwith-1
for(i=0;i<N;i++)
for(j=0;1<<j<N;j++)
P[i][j]
=-1;

//thefirstancestorofeverynodeiisT[i]
for(i=0;i<N;i++)
P[i][
0]=T[i];

//bottomupdynamicprograming
for(j=1;1<<j<N;j++)
for(i=0;i<N;i++)
if(P[i][j-1]!=-1)
P[i][j]
=P[P[i][j-1]][j-1];
}

这个过程将花费O(N logN)的时间和空间。现在让我们看看如何查询。用L[i]来表示节点i在树中所处的层数。可以看到,如果pq在树中的同一层中,我们可以使用一个类二分查找的方法进行搜索。因此,对于2j次方(界于log[L[p]0之间,降序),如果P[p][j] != P[q][j],那么可以知道LCA(p, q)必然在更高的层中,因此我们继续搜索LCA(p = P[p][j], q = P[q][j])。最后,pq都有了相同的祖先,因此返回T[p]。让我们看看如果L[p] != L[q]的情况。 不妨假设L[p] < L[q]。我们可以使用类似的二分搜索方法来查找与q在同一层次的p的祖先,然后我们在用下面所描述的方法计算LCA。整个函数如下:


int query( int N, int P[MAXN][LOGMAXN], int T[MAXN], int L[MAXN], int p, int q) { inttmp,log,i; //ifpissituatedonahigherlevelthanqthenweswapthem if(L[p]<L[q]) tmp=p,p=q,q=tmp; //wecomputethevalueof[log(L[p)] for(log=1;1<<log<=L[p];log++); log--; //wefindtheancestorofnodepsituatedonthesamelevel //withqusingthevaluesinP for(i=log;i>=0;i--) if(L[p]-(1<<i)>=L[q]) p=P[p][i]; if(p==q) returnp; //wecomputeLCA(p,q)usingthevaluesinP for(i=log;i>=0;i--) if(P[p][i]!=-1&&P[p][i]!=P[q][i]) p=P[p][i],q=P[q][i]; returnT[p]; }

现在,我们可以看到这个函数最多需要执行2*log(H)次的操作,这里的H是树的高度。在最坏情况下H=N,因此总的时间复杂度为<O(NlogN),O(logN)>。这个方案非常易编码,并且它比前一个要快。

Reduction from LCA to RMQ

现在,让我们看看怎样用RMQ来计算LCA查询。事实上,我们可以在线性时间里将LCA问题规约到RMQ问题,因此每一个解决RMQ的问题都可以解决LCA问题。让我们通过例子来说明怎么规约的:




点击放大图片
注意LCAT(u, v)是在对T进行dfs过程当中在访问uv之间离根结点最近的点。因此我们可以考虑树的 欧拉环游过程uv之间所有的结点,并找到它们之间处于最低层的结点。为了达到这个目的,我们可以 建立三个数组:

E[1, 2*N-1]- 对T进行欧拉环游过程中所有访问到的结点;E[i]是在环游过程中第i个访问的结点
L[1,2*N-1]- 欧拉环游中访问到的结点所处的层数;L[i]E[i]所在的层数
H[1, N] - H[i]E中结点i第一次出现的下标(任何出现i的地方都行,当然选第一个不会错)

假定H[u]<H[v](否则你要交换uv)。可以很容易的看到uv第一次出现的结点是E[H[u]..H[v]]。现

在,我们需要找到这些结点中的最低层。为了达到这个目的,我们可以使用RMQ。因此LCAT(u, v) = E[RMQL(H[u], H[v])](记住RMQ返回的是索引),下面是E,L,H数组:


点击放大图片


注意L中连续的元素相差为1。

From RMQ to LCA
我们已经看到了LCA问题可以在线性时间规约到RMQ问题。现在让我们来看看怎样把RMQ问题规约到LCA。这个意味着我们实际上可以把一般的RMQ问题规约到带约束的RMQ问题(这里相邻的元素相差1)。为了达到这个目的,我们需要使用笛卡尔树。
对于数组A[0,N-1]的笛卡尔树C(A)是一个二叉树,根节点是A的最小元素,假设iA数组中最小元素的位置。当i>0时,这个笛卡尔树的左子结点是A[0,i-1]构成的笛卡尔树,其他情况没有左子结点。右结点类似的用A[i+1,N-1]定义。注意对于具有相同元素的数组A,笛卡尔树并不唯一。在这篇教程中,将会使用第一次出现的最小值,因此笛卡尔树看作唯一。可以很容易的看到RMQA(i, j) = LCAC(i, j)
下面是一个例子:





现在我们需要做的仅仅是用线性时间计算C(A)。这个可以使用栈来实现。初始栈为空。然后我们在栈中插入A的元素。在第i步,A[i]将会紧挨着栈中比A[i]小或者相等的元素插入,并且所有较大的元素将会被移除。在插入结束之前栈中A[i]位置前的元素将成为i的左儿子,A[i]将会成为它之后一个较小元素的右儿子。在每一步中,栈中的第一个元素总是笛卡尔树的根。
如果使用栈来保存元素的索引而不是值,我们可以很
轻松的建立树。下面是上述例子中每一步栈的状态:

Step Stack Modifications made in the tree
0 0 0 is the only node in the tree.
1 0 1 1 is added at the end of the stack. Now, 1 is the right son of 0.
2 0 2 2 is added next to 0, and 1 is removed (A[2] < A[1]). Now, 2 is the right son of 0 and the left son of 2 is 1.
3 3 A[3] is the smallest element in the vector so far, so all elements in the stack will be removed and 3 will become the root of the tree. The left child of 3 is 0.
4 3 4 4 is added next to 3, and the right son of 3 is 4.
5 3 4 5 5 is added next to 4, and the right son of 4 is 5.
6 3 4 5 6 6 is added next to 5, and the right son of 5 is 6.
7 3 4 5 6 7 7 is added next to 6, and the right son of 6 is 7.
8 3 8 8 is added next to 3, and all greater elements are removed. 8 is now the right child of 3 and the left child of 8 is 4.
9 3 8 9 9 is added next to 8, and the right son of 8 is 9.

注意A中的每个元素最多被增加一次和最多被移除一次。因此上述算法的时间复杂度为O(N)。下面是树的处理函数:

void computeTree( int A[MAXN], int N, int T[MAXN]) { intst[MAXN],i,k,top=-1; //westartwithanemptystack //atstepiweinsertA[i]inthestack for(i=0;i<N;i++) { //computethepositionofthefirstelementthatis //equalorsmallerthanA[i] k=top; while(k>=0&&A[st[k]]>A[i]) k--; //wemodifythetreeasexplainedabove if(k!=-1) T[i]=st[k]; if(k<top) T[st[k+1]]=i; //weinsertA[i]inthestackandremove //anybiggerelements st[++k]=i; top=k; } //thefirstelementinthestackistherootof //thetree,soithasnofather T[st[0]]=-1; }
An<O(N), O(1)> algorithm for the restricted RMQ

现在我们知道了一般的RMQ问题可以使用LCA归约成约束版本。这里,数组中相邻的元素差值为1.我们可以使用一个更快的<O(N), O(1)>的算法。下面我们将在数组A[0,N-1]上解决RMQ问题,这里|A[i]-A[i+1]|=1,i=[1,N-1]。我们将把A转换为一个二元的有着N-1个元素的数组,其中A[i]=A[i]-A[i+1]。很显然A中的元素只有可能是+1或者-1。注意原来的A[i]的值现在是A[1],A[2],...,A[i]的和加上原来的A[0]。尽管如此,下面我们根本不需要原来的值。


为了解决这个问题的约束版本,我们需要将A分成l = [(log N) / 2]的大小块.让A'[i]A中第i块的最小值,B[i]A中最小块值的位置。A和B的长度均为N/l。现在我们利用第一节中讨论的ST算法预处理A'数组。这个将花费O(N/l * log(N/l))=O(N)的时间和空间。经过预处理之后,我们可以在O(1)时间内在很多块上进行查询。具体的查询过程和上面说过的一样。注意每个块的长度为l=[(logN)/2],这个非常的小。同样,要注意A是一个二元数组。二元数组的总的元素的大小l满足2l=sqrt(N)。因此,对于每一个二元数组中的块l,我们需要在表P中查询每一对索引的RMQ。这个可以在O(sqrt(N)*l2)=O(N) 的时间和空间内解决。为了索引表P,可以预处理A中的每一个块并且将其存储在数组T[1,N/l]中。块的类型可以成为一个二进制数如果把-1替换成0,把+1替换成1。

现在,对于询问RMQA(i, j)我们有两种情况:

ij在同一个块中,因此我们使用在 PT中计算的值 ij在不同的块中,因此我们计算三个值:从ii所在块的末尾的PT中的最小值,所有ij中块中的通过与处理得到的最小值以及从j所在块ij在同一个块中,因此我们使用在PT中计算的值 jPT的最小值;最后我们我们只要计算三个值中最小值的位置即可。
Conclusion
RMQ和LCA是密切相关的问题,因为他们互相之间都可以规约。有许多算法可以用来解决它们,并且他们适应于一类问题。

下面是一些用来练习线段树,LCA和RMQ的题目:


SRM 310 -> Floating Median
http://www.topcoder.com/tc?module=LinkTracking&link=http://acm.pku.edu.cn/JudgeOnline/problem?id=1986&refer=
http://www.topcoder.com/tc?module=LinkTracking&link=http://acm.pku.edu.cn/JudgeOnline/problem?id=2374&refer=
http://www.topcoder.com/tc?module=LinkTracking&link=http://acmicpc-live-archive.uva.es/nuevoportal/data/problem.php?p=2045&refer=
http://www.topcoder.com/tc?module=LinkTracking&link=http://acm.pku.edu.cn/JudgeOnline/problem?id=2763&refer=
http://www.topcoder.com/tc?module=LinkTracking&link=http://www.spoj.pl/problems/QTREE2/&refer=
http://www.topcoder.com/tc?module=LinkTracking&link=http://acm.uva.es/p/v109/10938.html&refer=
http://www.topcoder.com/tc?module=LinkTracking&link=http://acm.sgu.ru/problem.php?contest=0%26problem=155&refer=


References
- " Theoretical and Practical Improvements on the RMQ-Problem, with Applications to LCA and LCE" [PDF] by Johannes Fischer and Volker Heunn
- " The LCA Problem Revisited" [PPT] by Michael A.Bender and Martin Farach-Colton - a very good presentation, ideal for quick learning of some LCA and RMQ aproaches
- " Faster algorithms for finding lowest common ancestors in directed acyclic graphs" [PDF] by Artur Czumaj, Miroslav Kowaluk and Andrzej Lingas
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值