协同训练与主动学习框架:提升图像自动标注的精度与效率
1. 引言
在多媒体信息检索领域,图像自动标注一直是一个热门话题。随着网络上动态图像和视频集合的迅速增长,开发(半)自动化技术以准确和完整地用语义概念注释图像显得尤为重要。本文将探讨如何通过协同训练(Co-training)和主动学习(Active Learning)框架,提升图像自动标注的精度和效率。协同训练是一种半监督学习方法,它利用少量标记数据和大量未标记数据来训练模型。而主动学习则确保框架能够扩展到更大的问题,通过选择最不确定的未标记数据并要求人类用户进行标记,从而提高模型的泛化能力。
2. 协同训练框架
2.1 自举过程中的区域分类器
给定每张图像的一组区域,我们首先讨论如何使用协同训练框架独立地推导出每个区域的概念。为了启动协同训练过程,需要开发两个(弱)视图独立分类器。为此,在特征提取阶段,我们采用不同的函数 ( F_q(R_{ij}) ),( q \in [1, 2] ),来选择不同的特征集来表示图像中每个单元 ( R_{ij} ) 的内容。这里,我们将特征集简单地分为两个不相交的集合:
- 集合 1:颜色直方图
- 集合 2:纹理和形状特征
我们将特征集表示为 ( F_1(R_{ij}) ) 和 ( F_2(R_{ij}) )。接下来,我们使用概率支持向量机(pSVM)方法来训练分类器 ( Ga(R_{ij}) ),将子单元 ( R_{ij} ) 的内容与概念集 ( LC ) 相关联。对于不同的特征集 ( F_1(R_{ij}) ) 和 ( F_2(R_{ij}) ),我们使用 SVM 开发了两个独立的分类器 ( HP_1 ) 和 ( HP_
订阅专栏 解锁全文
27

被折叠的 条评论
为什么被折叠?



