第一种:冒泡排序法
算法思想:首先将第一个记录的关键字与第二个记录的关键字进行比较,若为逆序,则交换这两个记录的值,然后比较第二个记录和第三个记录的关键字,以此类推,直至第n-1个和第n个记录的关键字比较过为止;至此第一趟冒泡排序完成,对前n-1个记录的关键字按照第一趟的冒泡排序排序,依次循环,直到最后缩到第一个为止
void SelectSort(int data[],int n)
- {
- int i , j , temp;
- for( i = 0;i<n;i++)
- for(j = 0;j<n-i-1;j++)
- {
- if(data[j]>data[j+1])
- {
- temp = data[j];
- data[j] = data[j+1];
- data[j+1] = temp;
- }
- }
- }
第二种:简单排序法
算法思想:通过n-i次关键字之间的比较,从n-i+1个记录中选出最小关键字的记录,并和第i个记录进行交换,当i=n时所有记录有序排列
void SelectSort(int data[] , int n)
- {
- int i,j,k,temp;
- for(i = 0;i<n-1;i++)
- {
- k = i;
- for(j=i+1;j<n;j++)
- if(data[j]<data[k])
- k = j;
- if(k!=i)
- {
- temp = data[i];
- data[i] = data[k];
- data[k] = temp;
- }
- }
- }
第三种:希尔排序法,又称“缩小增量排序法”
算法思想:先将整个待排记录分成若干序列,然后分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。
程序源码:
- void ShellSort(int data[],int n)
- {
- int *delta , k,i,t,dk,j;
- k = n;
- /*从k=n开始,重复k=k/2运算,直到k=0,所得k值的序列作为增量序列存入delta*/
- delta = (int*)malloc(sizeof(int)*(n/2));
- i = 0;
- do
- {
- k = k/2;
- delta[i++] = k;
- }while(k>0);
- i = 0;
- while((dk=delta[i])>0)
- {
- for(k=delta[i];k<n;k++)
- if(data[k]<data[k-dk])/*将元素data[k]插入有序增量子表中*/
- {
- t = data[k]; /*备份待插入的元素,空出一个元素位置*/
- for(j = k-dk;j>=0&&t<data[i];j-=dk)
- data[j+dk] = data[j];/*寻找插入位置的同时元素后移*/
- data[j+dk] = t;/*找到插入位置,插入元素*/
- }
- ++i; /*取下一个增量值*/
- }
- }
第四种:快速排序法
算法思想:通过一趟排序将待排的记录分割成独立的两个部分,其中一部分记录的关键字不大于(或不小于)另一部分记录的任意关键字,然后再分别对着两部分记录继续进行排序,以达到整个序列有序
程序源码:
- void QuickSort(int data[],int low , int high)
- {
- int i,prvotkey,j;
- if(low<high)
- {
- prvotkey = data[low];//以数组的第一个元素作为基本元素进行划分
- i = low;
- j = high;
- while(i<j)//从数组两端交替的向中间扫描
- {
- while(i<j&&data[j]>=prvotkey)
- j--;
- if(i<j)
- data[i++] = data[j];//比基准元素小的移到低下标段
- while(i<j&&data[i]<=prvotkey)
- i++;
- if(i<j)
- data[j--] = data[i];//比基准元素大的移到高下标段
- }
- data[i] = prvotkey; //移动基准元素到正确位置
- QuickSort(data , low , i-1);//对前半个子表递归排序
- QuickSort(data , j+1 , high);//对后半个子表递归排序
- }
这几种算法中,希尔排序法虽然从代码上看好像比较繁琐,但是实际上时间复杂度最低,运行速度最快,时间复杂度为O(n^1.3);