深夜的男孩和女孩

时间:一天晚上。

        地点:躺在床上。

        人物:相互喜欢的双方。 



        女生貌似很想他,于是决定给他发一条短信:



        你睡了吗?在干嘛呢?呵呵,我们还在说话呢。据说明天要降温,多穿点衣服呀!!其实---其实---我现在挺想你的!!



        考虑了一分钟,把短信改成:



        你睡了吗?在干嘛呢?呵呵,我们还在说话呢。据说明天要降温,多穿点衣服呀!!



        又考虑了一分钟:



        你睡了吗?在干嘛呢?呵呵,我们还在说话呢。



        又一分钟:



        你睡了吗?在干嘛呢?



        又一分钟:



        睡了吗?在干嘛?



        然后,她按了确定发送的键!

        (叹气....)





        男生的手机响了!男生抓起来一看果然是她,莫名的激动起来!赶紧给她回短信:



        我还没有睡呢,现在正在上网。呵呵,我们宿舍也正热闹的起劲!!听说明天要降温,别忘了多穿衣服呀!其实--其实--咱们明天一起吃饭吧?



        考虑了一分钟:



        我还没有睡呢,现在正在上网。呵呵,我们宿舍也正热闹的起劲!!听说明天要降温,别忘了多穿衣服呀!



        又考虑了一分钟:



        我还没有睡呢,现在正在上网。



        又一分钟:



        上网。



        然后,他按了确定发送的键!

        (叹气....)









有没有试过这样的情况,你喜欢的那个人,你居然会不敢和他说话。

写一个短信给他,到了最后一秒,居然就会删除。

左想右想,怕他知道你的心轻视你,怕哪句话说不好让他不开心,

更怕的是,对方再忙忘记了或者因为别的原因没有回应,你多么尴尬。



写一封邮件给他,写了一千字,删除掉八百字。

去掉我想念你,去掉所有的心情,去掉天气,去掉自己刚刚看的电影,

去掉自己昨天心情不好以及今天心情好的原因,去掉所有和感情相关的字眼,

仿佛公事公办的,变成三行的邮件,到了最后,居然也没有发出去。



不喜欢的人,可以容易地讲个笑话,随便地发个短信,

甚至,打去电话问对方有什么节目以便随时去参加。

喜欢的,却变成心里的死穴一个,动都不敢动,甚至,看到的时候,话都说不出来。





喜欢某个人,偏偏见到他,一句话没有。

看着旁边的朋友和他谈笑风生,心里又嫉妒又着急。




暗示或者表白心际,永远不丢人。需要谨记的一条,也是最重要的一条是,

暗示或者表白,只此一次。



相信我,话说到这样,一次就够了。
没有任何表白或者暗示,谈一场对方不知道的恋爱是很白痴的事情。

对方收到你的讯息没有回应你依旧持续表白追求则是更白痴的事情。




他喜欢你,他一定会约会你。
如果对方完全没有回应,但是你还是在喜欢他,那你就一边忍一边等。
到了某一天,忍到忍无可忍。
对方依旧没有找你。这个人,那就算了吧。

【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值