AI时代下的架构设计:从传统到智能化的技术演进

作者:蓝葛亮
发布时间:2025年6月
关键词:架构设计、AI原生、微服务、云原生、MLOps


在这里插入图片描述

📖 文章目录

第一章:AI架构设计概述

第二章:AI原生应用架构模式

第三章:微服务在AI系统中的演进

第四章:云原生AI架构实践

第五章:MLOps与LLMOps工程化

第六章:边缘计算与AI融合架构

第七章:数据架构的AI化转型

第八章:AI架构安全与治理

第九章:性能优化与可扩展性

第十章:行业案例与最佳实践


第一章:AI架构设计概述

1.1 AI时代架构设计的核心理念

随着2025年的到来,人工智能正从辅助工具演变为工作与生活中不可或缺的智能伙伴。据微软研究院统计,商业领袖和AI决策者对生成式人工智能的使用率已从55%激增至75%。AI驱动的代理(Agent)将拥有更高的自主性来执行更多任务,从而彻底改变传统的系统架构设计理念。

AI时代的架构设计呈现出以下核心特征:

自主决策能力:现代AI架构能够基于机器学习模型自主做出决策,无需人工干预即可解释数据并响应变化条件。这标志着从静态、基于规则的系统向动态、智能化系统的根本转变。

智能编排系统:超越传统工作流管理,发展为能够基于实时智能动态重构工作流的自适应系统。Netflix的Maestro架构就是典型例子,从单一领导者转向分布式编排器,每日处理数十万工作流。

多模态融合处理:2025年的AI架构需要同时处理文本、图像、音频、视频等多种数据类型,实现真正的多模态理解和生成能力。

传统架构
AI驱动架构
静态配置
基于规则
人工决策
单一模态
动态自适应
基于学习
自主决策
多模态融合
实时优化
持续学习
智能编排
统一处理

1.2 传统架构向AI驱动架构的转变

架构演进展现出四个关键转变维度:

从静态到动态:传统架构依赖静态配置和预定义工作流,而AI驱动架构能够基于学习模式动态重配置,实现自主扩展和优化。

从确定性到概率性:AI架构采用基于置信度的概率决策,取代了传统的二元成功/失败状态。系统需要处理不确定性,并在多个可能的结果中选择最优方案。

从批处理到实时流式:传统ETL批处理模式转向实时数据流处理,支持AI模型的在线学习和实时推理。

从单体到智能微服务:微服务架构在AI时代获得新的内涵,每个服务都可能包含AI能力,实现智能化的服务发现、负载均衡和故障恢复。

1.3 2025年AI架构发展趋势

根据智源研究院发布的《2025十大AI技术趋势》,以下趋势将主导AI架构设计:

AI智能体元年:2025年将成为AI智能体(Agentic AI)的元年,从"增强知识"向"增强执行"转变。Gartner预测,到2028年,AI智能体将自动化至少15%的日常决策。

具身智能突破:具身大小脑和本体的协同进化将推动新的架构模式,端到端模型继续迭代,小脑大模型的尝试可能有所突破。

边缘AI成熟:据预测,2025年将有75%的数据产生在数据中心和云之外的边缘侧,边缘AI架构将成为主流。

多模态统一:基于"下一个Token预测"的统一多模态大模型将实现更高效的AI处理能力。


第二章:AI原生应用架构模式

2.1 智能体架构(Agentic AI)

智能体架构作为2024-2025年的新兴模式,代表了向自主AI系统的转变。这种架构能够做出决策、使用工具并与其他智能体协作。

核心设计模式

  1. 反思模式(Reflection Pattern):智能体能够评估自己的输出并进行改进
  2. 工具使用模式(Tool Use Pattern):集成外部工具和API
  3. 规划模式(Planning Pattern):制定和执行多步骤计划
  4. 多智能体协作模式:多个智能体协同完成复杂任务
用户请求
智能体编排器
任务规划器
工具调用器
记忆管理器
子任务1
子任务2
子任务N
专业智能体A
专业智能体B
专业智能体C
工具调用
工具调用
工具调用
结果聚合
最终输出

技术实现要点

  • RAG增强:检索增强生成工作流提供实时知识更新
  • 模块化架构:每个智能体专注特定领域或任务
  • 事件驱动通信:通过消息队列实现智能体间的异步通信
  • 状态管理:持久化智能体的对话历史和上下文

2.2 事件驱动AI架构

事件驱动AI架构成为2024-2025年的主导模式,实现异步通信、弹性缓冲和实时数据处理。

架构优势

  • 实时响应:ML模型能够实时处理数据流
  • 弹性扩展:基于事件量的自动扩展机制
  • 故障隔离:通过事件解耦提升系统韧性
  • 智能路由:AI驱动的事件路由和处理

核心组件

  • Apache Kafka:用于高吞吐量事件流处理
  • Apache Airflow:负责工作流编排
  • Kubeflow:专注ML管道编排
  • Redis Streams:轻量级事件流存储
用户/系统 事件总线 AI处理器 模型服务 存储层 发送事件 事件路由 事件分析 调用模型 推理计算 返回结果 存储结果 发布结果事件 异步通知 用户/系统 事件总线 AI处理器 模型服务 存储层

2.3 多模态大模型架构

2025年,多模态大模型将进一步融入架构设计,实现文本、图像、音频、视频的统一处理。

统一架构设计

基于"下一个Token预测"的范式,多模态数据被统一编码为token序列,通过单一模型处理所有模态。

关键技术特点

  • 模态无关编码:不同模态数据统一编码为token
  • 注意力机制:跨模态注意力实现模态间信息融合
  • 分层处理:不同层次处理不同粒度的多模态信息
  • 动态路由:根据任务需求动态选择处理路径

第三章:微服务在AI系统中的演进

3.1 AI增强的微服务架构

2025年,微服务架构在AI技术驱动下获得新的发展动力。根据Statista数据,微服务架构的采用率在未来两年内有望实现40%的增长。

AI增强特性

  1. 智能服务发现:基于ML的服务健康评估和负载预测
  2. 自适应负载均衡:根据服务性能和用户模式动态调整
  3. 智能故障恢复:预测性维护和自动故障修复
  4. 服务编排优化:AI驱动的服务依赖关系优化

微服务AI化改造要点

  • 服务智能化:为每个微服务添加AI能力
  • 数据驱动决策:基于运行时数据进行服务优化
  • 预测性扩缩容:预测负载变化并提前调整资源
  • 智能监控告警:异常检测和根因分析
AI增强微服务架构
服务网格
API Gateway + AI路由
AI服务A
业务服务B
数据服务C
模型推理
特征工程
业务逻辑
AI增强决策
数据处理
实时分析
智能监控
AI运维平台
预测性维护
自动扩缩容

3.2 大模型时代的微服务设计模式

基于AI能力的服务拆分

  • NLP服务:文本理解、生成、翻译等
  • 计算机视觉服务:图像识别、生成、处理
  • 推荐系统服务:个性化推荐和内容过滤
  • 决策支持服务:智能分析和预测

AI特定的分解模式

  • 数据处理服务:数据清洗、特征工程、数据增强
  • 模型服务:模型训练、推理、版本管理
  • 编排服务:工作流编排、任务调度
  • 监控服务:性能监控、模型漂移检测

服务间通信优化

客户端
负载均衡器
AI路由服务
模型A v1.0
模型A v1.1
模型B
特征服务
数据服务
监控服务
A/B测试

3.3 服务治理与AI智能化

智能服务治理包括:

  1. 自动化配置管理:基于历史数据和负载模式自动优化配置
  2. 智能熔断机制:预测服务故障并提前熔断
  3. 动态路由策略:根据服务性能和用户偏好动态路由
  4. 服务依赖优化:分析服务调用链并优化依赖关系

第四章:云原生AI架构实践

4.1 Kubernetes在AI工作负载中的应用

Kubernetes已确立在AI工作负载编排中的领导地位。CNCF在2024年3月发布的云原生AI白皮书建立了CNAI的基础框架。

关键特性升级

  • 动态资源分配API:Kubernetes v1.26+支持灵活的GPU管理
  • 多实例GPU:多个工作负载高效共享单个GPU
  • vGPU技术:虚拟化GPU资源以提高利用率
  • 多进程服务:同一GPU上运行多个推理服务

AI工作负载调度优化

Kubernetes集群
GPU节点池
CPU节点池
内存优化节点池
训练Pod
推理Pod
数据处理Pod
特征工程Pod
大模型服务Pod
AI调度器
资源预测
负载均衡
故障转移
监控系统
指标收集
告警处理
自动扩缩容

最佳实践配置

  • 资源配额管理:为不同类型的AI工作负载设置合适的资源限制
  • 节点亲和性:将计算密集型任务调度到GPU节点
  • Pod优先级:训练任务低优先级,推理服务高优先级
  • 滚动更新策略:模型更新时的零停机部署

4.2 无服务器AI基础设施

2024年无服务器AI基础设施取得突破性进展,RunPod、Nscale和Modal等平台提供真正的无服务器GPU访问。

技术突破

  • Flashboot容器优化:冷启动时间从分钟缩短到秒级
  • 按使用付费模式:精确的资源使用计费
  • 自动扩缩容:基于请求量自动调整资源
  • 多环境部署:62.1%的组织在多个环境中运行推理

架构设计模式

客户端 API网关 无服务器平台 模型容器 GPU资源池 推理请求 路由请求 检查容器状态 分配GPU资源 启动模型容器 加载模型 alt [容器不存在或冷启动] 转发请求 执行推理 返回结果 返回结果 响应 自动释放闲置资源 客户端 API网关 无服务器平台 模型容器 GPU资源池

4.3 容器化AI服务的最佳实践

多阶段构建优化

# 第一阶段:构建环境
FROM nvidia/cuda:11.8-devel-ubuntu20.04 AS builder
RUN apt-get update && apt-get install -y python3 python3-pip
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# 第二阶段:运行环境
FROM nvidia/cuda:11.8-runtime-ubuntu20.04
COPY --from=builder /usr/local/lib/python3.8/site-packages /usr/local/lib/python3.8/site-packages
COPY model/ /app/model/
COPY src/ /app/src/
WORKDIR /app
CMD ["python3", "serve.py"]

容器优化策略

  • 镜像分层优化:将模型文件和应用代码分层
  • 缓存策略:利用Docker层缓存加速构建
  • 资源限制:设置合适的CPU和内存限制
  • 健康检查:实现模型服务的健康检查端点

第五章:MLOps与LLMOps工程化

5.1 现代MLOps架构设计

MLOps架构框架已经成熟,Databricks湖仓架构基于开放行业标准,统一DevOps、DataOps和ModelOps方法。

四阶段成熟度模型

  1. 初始阶段:手动模型训练和部署
  2. 可重复阶段:自动化训练管道
  3. 可靠阶段:CI/CD集成和监控
  4. 可扩展阶段:端到端自动化和治理
数据源
数据验证
特征工程
模型训练
模型验证
模型注册
模型部署
在线监控
实验跟踪
超参数调优
模型版本管理
A/B测试
性能监控
漂移检测
性能下降?
触发重训练
继续监控

关键组件集成

  • 特征存储:Feast、Tecton、Hopsworks提供统一特征管理
  • 实验追踪:MLflow、Weights & Biases记录实验过程
  • 模型注册表:统一模型版本管理和元数据
  • 监控系统:模型性能、数据漂移、业务指标监控

5.2 大模型运维(LLMOps)体系

LLMOps作为MLOps的专门化分支,专注于大型语言模型的运维挑战。

LLMOps vs MLOps关键差异

维度MLOpsLLMOps
模型大小MB-GB级别GB-TB级别
训练成本相对较低极高(数百万美元)
推理延迟毫秒级秒级
评估指标准确率、F1等生成质量、安全性
数据需求结构化为主大量文本数据

LLMOps特有挑战

  • 成本优化:超参数调优关注成本和计算力要求
  • 提示工程:提示模板管理和优化
  • 安全性评估:内容安全、偏见检测、对抗攻击防护
  • 人类反馈:RLHF(人类反馈强化学习)集成
预训练模型
领域适配
指令微调
人类反馈训练
安全性评估
模型部署
提示工程
提示优化
上下文学习
推理服务
响应监控
质量评估
反馈收集
成本监控
资源优化
批量处理

5.3 CI/CD管道的AI化升级

AI增强的CI/CD流程

  • 智能测试用例生成:基于代码变更自动生成测试用例
  • 预测性部署:预测部署风险并选择最佳时机
  • 自动回滚决策:基于监控指标自动决定是否回滚
  • 性能基准预测:预测新版本的性能表现

模型特定CI/CD

# 模型CI/CD管道示例
stages:
  - data_validation
  - feature_engineering
  - model_training
  - model_validation
  - model_testing
  - model_deployment
  - monitoring

model_training:
  script:
    - python train.py --config config/production.yaml
    - python validate.py --model models/latest
  artifacts:
    paths:
      - models/
      - metrics/
  rules:
    - if: $CI_COMMIT_BRANCH == "main"

第六章:边缘计算与AI融合架构

6.1 边缘AI架构设计原则

根据《2025边缘AI技术报告》,边缘AI正在各个行业掀起风潮,预计2025年将有75%的数据产生在边缘侧。

三层边缘计算模型

  1. 微边缘(Micro Edge):物联网设备、传感器
  2. 薄边缘(Thin Edge):边缘网关、路由器
  3. 厚边缘(Thick Edge):边缘服务器、小型数据中心
微边缘
薄边缘
厚边缘
云端
IoT设备
传感器
执行器
边缘网关
数据预处理
协议转换
边缘服务器
模型推理
数据聚合
云数据中心
大模型训练
模型仓库

设计原则

  • 就近处理:在最接近数据源的位置进行AI推理
  • 分层智能:不同层次承担不同复杂度的AI任务
  • 动态协作:边缘节点间的动态协作和负载分担
  • 离线能力:网络断连时的独立运行能力

6.2 TinyML与边缘智能

TinyML的成熟度可能超出很多人的预期,已经在现实场景中产生众多应用案例。

技术特点

  • 超低功耗:微瓦级功耗设计
  • 实时处理:毫秒级推理延迟
  • 离线运行:无需网络连接
  • 成本优化:芯片成本降至美元级别

行业应用案例

  1. 汽车行业:Waymo扩展模拟训练处理罕见驾驶情况,理想汽车端到端模型从500万驾驶数据片段学习
  2. 制造业:边缘AI通过实时设备监控减少75%停机时间
  3. 医疗保健:远程患者监控实现及时医疗干预
  4. 智慧城市:交通优化系统响应时间低于100毫秒

6.3 边云协同的AI计算模式

联邦学习架构

云端协调器 边缘节点1 边缘节点2 边缘节点3 发送全局模型 发送全局模型 发送全局模型 本地训练 本地训练 本地训练 上传模型更新 上传模型更新 上传模型更新 聚合模型更新 更新全局模型 重复联邦学习轮次 云端协调器 边缘节点1 边缘节点2 边缘节点3

边云协同优势

  • 数据隐私保护:数据不离开边缘设备
  • 网络带宽优化:只传输模型参数而非原始数据
  • 个性化模型:结合全局知识和本地特征
  • 故障容错能力:单个节点故障不影响整体系统

第七章:数据架构的AI化转型

7.1 AI驱动的数据湖架构

65%的分析工作负载现在运行在湖仓架构上,81%的组织使用湖仓支持AI模型开发。

湖仓一体化架构

应用层
数据服务层
计算引擎层
数据湖存储层
数据源层
BI报表
机器学习
实时分析
批处理服务
流处理服务
AI推理服务
Spark引擎
Flink引擎
AI/ML引擎
对象存储
文件系统
数据分区
结构化数据
半结构化数据
非结构化数据
流式数据

关键技术特性

  • ACID事务支持:Delta Lake、Apache Iceberg提供事务性保证
  • 模式演进:支持数据结构的动态变化
  • 时间旅行:数据版本管理和历史查询
  • 多引擎支持:同一数据支持多种计算引擎

7.2 实时数据流处理系统

流批一体化架构

  • Apache Flink:统一流批处理引擎
  • Apache Kafka:高吞吐量消息队列
  • Apache Pulsar:云原生分布式消息系统
  • Redis Streams:轻量级流数据存储

实时特征工程

原始数据流
数据清洗
特征提取
特征变换
特征存储
在线推理
离线训练
特征血缘
特征监控
数据质量
特征漂移检测
推理结果
模型更新

7.3 特征工程与数据网格

特征存储架构

特征存储实现训练和服务的一致特征定义,消除训练-服务偏差,支持亚毫秒级延迟的实时推理。

主要解决方案

  • Feast:开源特征存储框架
  • Tecton:企业级特征平台
  • Databricks特征存储:集成式解决方案
  • Hopsworks:端到端ML平台

数据网格模式

数据网格将数据视为产品,由领域团队拥有和管理,实现去中心化的数据管理。

数据网格架构
联邦治理
数据产品A
数据产品B
数据产品C
自助服务平台
全局策略
数据标准
开发工具
监控工具
领域团队1
领域团队2
领域团队3

第八章:AI架构安全与治理

8.1 AI系统安全架构设计

多层防护体系

Google安全AI框架通过六个核心要素构建全面防护:扩展安全基础、增强检测响应、自动化防御、协调平台控制、适应性缓解和创建反馈循环。

AI安全架构
模型层安全
应用层安全
数据层安全
基础设施安全
输入验证
输出过滤
访问控制
模型加密
对抗训练
模型水印
数据加密
差分隐私
联邦学习
网络安全
容器安全
硬件安全
威胁检测
异常行为分析
对抗攻击检测
数据投毒检测
自动响应
模型隔离
流量限制
降级服务

8.2 模型安全与隐私保护

对抗攻击防护

  • 对抗训练:在训练过程中加入对抗样本
  • 梯度掩蔽:隐藏模型梯度信息
  • 输入净化:检测和清除恶意输入
  • 集成防御:多模型投票机制

隐私保护技术

  1. 差分隐私:在数据中添加噪声保护个体隐私
  2. 同态加密:在加密状态下进行计算
  3. 安全多方计算:多方协作计算不泄露原始数据
  4. 联邦学习:模型训练不共享原始数据

8.3 AI治理框架与合规

NIST AI风险管理框架

2024年7月发布AI风险管理框架的生成式AI配置文件,涵盖治理、映射、测量和管理功能。

企业AI治理体系

AI治理委员会
技术治理
业务治理
法律合规
模型开发规范
数据管理标准
安全技术要求
业务影响评估
风险管理流程
绩效监控指标
法律法规遵循
伦理审查流程
责任分配机制
持续监控
模型性能监控
偏见检测评估
安全事件响应

关键合规要求

  • 透明性要求:模型决策过程可解释
  • 公平性保证:避免算法偏见和歧视
  • 问责机制:明确责任主体和问责流程
  • 数据保护:符合GDPR等数据保护法规

第九章:性能优化与可扩展性

9.1 AI工作负载性能优化

模型优化技术

  • 量化优化:FP16、INT8量化减少内存使用50%
  • 模型蒸馏:小模型学习大模型知识
  • 剪枝技术:移除不重要的模型参数
  • 融合优化:算子融合减少计算开销

推理加速技术

原始模型
模型优化
编译优化
硬件加速
部署优化
量化
剪枝
蒸馏
TensorRT
OpenVINO
ONNX Runtime
GPU加速
TPU加速
专用芯片
批处理
缓存策略
负载均衡

9.2 分布式训练架构

分布式训练策略

  • 数据并行:数据分片,模型复制
  • 模型并行:模型分片,数据复制
  • 流水线并行:模型分层,流水线执行
  • 混合并行:结合多种并行策略

技术实现

# PyTorch分布式训练示例
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

def setup_distributed():
    dist.init_process_group(backend='nccl')
    torch.cuda.set_device(local_rank)

def create_model():
    model = YourModel()
    model = model.cuda()
    model = DistributedDataParallel(model)
    return model

# ZeRO优化器状态分片
from deepspeed import DeepSpeedConfig
config = {
    "zero_optimization": {
        "stage": 3,
        "offload_optimizer": {"device": "cpu"},
        "offload_param": {"device": "cpu"}
    }
}

9.3 推理服务的高可用设计

多级缓存架构

  • L1缓存:模型内存缓存
  • L2缓存:Redis分布式缓存
  • L3缓存:CDN边缘缓存
  • 预热机制:预加载热点数据

弹性扩缩容策略

监控系统 自动扩缩容 Kubernetes Pod实例 收集指标 发送告警 决策扩缩容 调整副本数 创建/删除Pod 报告状态 基于QPS、延迟、资源使用率 监控系统 自动扩缩容 Kubernetes Pod实例

故障转移机制

  • 多区域部署:跨区域的模型服务部署
  • 健康检查:定期检查服务健康状态
  • 熔断机制:防止故障传播
  • 降级策略:服务不可用时的降级方案

第十章:行业案例与最佳实践

10.1 互联网企业AI架构案例

Netflix AI工厂架构

Netflix每日处理数十万工作流和数百万作业,推荐引擎驱动80%的内容消费。

Netflix AI架构
实时特征工程
用户行为数据
推荐模型服务
个性化API
内容理解模型
内容元数据
内容特征库
实验管理
A/B测试平台
效果评估
模型迭代
工作流管理
Maestro编排器
任务调度
资源分配

关键技术特点

  • 分布式编排:从单一领导者转向分布式编排器
  • 实时推荐:亚秒级个性化推荐响应
  • 内容理解:深度学习驱动的内容分析
  • 规模化实验:大规模A/B测试平台

10.2 金融行业AI系统设计

金融AI风控架构

低风险
中风险
高风险
交易数据流
实时风险评估
规则引擎
ML模型
风险决策
风险等级
自动通过
人工审核
拒绝交易
历史数据
离线训练
模型更新
监管合规
审计日志
合规报告

合规要求

  • 可解释性:监管要求模型决策可解释
  • 审计追踪:完整的决策路径记录
  • 数据隐私:客户数据保护和匿名化
  • 实时性:毫秒级风险评估响应

10.3 制造业智能化架构实践

工业4.0 AI架构

  • 边缘智能:设备端实时故障检测
  • 数字孪生:虚拟工厂仿真和优化
  • 预测维护:基于IoT数据的设备健康预测
  • 质量控制:计算机视觉的产品质量检测

技术实现架构

应用层
云端平台
边缘计算层
车间现场
实时状态显示
生产监控大屏
预防性维护
维护管理系统
质量追溯
质量管理系统
数据分析平台
历史数据库
预测模型训练
模型部署
实时数据处理
故障检测模型
质量检测模型
边缘网关
IoT传感器
工业相机
PLC控制器

关键成效

  • 停机时间减少75%:通过实时设备监控
  • 质量缺陷率降低60%:AI视觉检测
  • 维护成本节省40%:预测性维护
  • 生产效率提升25%:智能排产优化

总结与展望

核心观点总结

  1. AI原生架构成为主流:2025年标志着从AI增强向AI原生架构的转变,智能体架构成为核心设计模式。

  2. 边缘智能快速发展:75%的数据将在边缘侧产生,边缘AI架构成为必然趋势。

  3. MLOps向LLMOps演进:大模型时代需要专门的运维体系,成本优化和安全性成为关键挑战。

  4. 云原生AI成熟:Kubernetes确立在AI工作负载编排中的主导地位,无服务器AI基础设施实现突破。

  5. 数据架构AI化:湖仓一体、特征存储、数据网格等技术支撑AI应用的数据需求。

技术发展趋势

短期趋势(2025-2026)

  • 智能体架构大规模落地
  • 边缘AI设备普及
  • 多模态大模型统一
  • LLMOps工具链完善

中期趋势(2027-2028)

  • 神经形态计算商用
  • 量子-AI混合计算
  • 自主AI系统成熟
  • 全域AI化改造

长期趋势(2029-2030)

  • 通用人工智能(AGI)突破
  • AI基础设施标准化
  • 全社会AI化转型
  • 新一代计算范式

实施建议

技术选型建议

  1. 优先云原生:选择支持Kubernetes的AI平台
  2. 关注边缘:布局边缘AI能力
  3. 重视安全:从设计阶段考虑AI安全
  4. 投资MLOps:建立完善的模型运维体系

组织能力建设

  1. 人才培养:培养AI原生架构师
  2. 技能提升:传统开发者AI化转型
  3. 流程改造:建立AI化开发流程
  4. 文化变革:培养AI优先的技术文化

风险控制策略

  1. 技术风险:多技术路线并行,避免单点依赖
  2. 合规风险:跟进AI法规,建立合规体系
  3. 安全风险:全生命周期安全设计
  4. 成本风险:精细化成本管理和优化

参考资料

  1. Microsoft Research - 2025年六大AI趋势展望
  2. 智源研究院 - 2025十大AI技术趋势
  3. CNCF - 云原生人工智能白皮书
  4. 边缘智能基金会 - 2025边缘AI技术报告
  5. IBM - AI Agents in 2025: Expectations vs. Reality

版权声明:本文原创发布,转载请注明出处。
技术交流:欢迎关注公众号【TechVision大咖圈】,获取更多架构设计资料。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TechVision大咖圈

您的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值