可计算理论

一,可枚举性

如果可以给出和一个集合对应的无限数列,集合中的成员都有第1次出现的准确位置,则称这个集合是可枚举的。也可以把可枚举集合称为可数集

PS:成员允许出现多次,数列中也允许出现不是这个集合的成员。当然,不允许这两条其实也是一样的。

二,常见集合

1,整数集

显然是可数集。

2,正整数对

即由2个整数组成的pair,有2种枚举方式:

(1)康托法,先按和为2,3,4......排列,再拼起来

(2)按照二进制的方式,先把所有的(1,n)按照隔一个位置放一个的方式放完,对于剩下的空位,再把所有的(2,n)按照隔一个位置放一个的方式放完,对于剩下的位置......

所以正整数对构成的集合是可数集。

3,有理数

类似正整数对构成的集合,也是可数集。

4,实数区间(0,1)

不是可数集,可以用反证法,假设把区间内所有实数排好了,利用对角线可以构造一个不在这个排列中但是在区间中的数。

5,实数

实数区间(0,1)和实数集可以构成一一对应,所以实数集也是不可数集。

三,译码、编码

(11)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值