一,可枚举性
如果可以给出和一个集合对应的无限数列,集合中的成员都有第1次出现的准确位置,则称这个集合是可枚举的。也可以把可枚举集合称为可数集。
PS:成员允许出现多次,数列中也允许出现不是这个集合的成员。当然,不允许这两条其实也是一样的。
二,常见集合
1,整数集
显然是可数集。
2,正整数对
即由2个整数组成的pair,有2种枚举方式:
(1)康托法,先按和为2,3,4......排列,再拼起来
(2)按照二进制的方式,先把所有的(1,n)按照隔一个位置放一个的方式放完,对于剩下的空位,再把所有的(2,n)按照隔一个位置放一个的方式放完,对于剩下的位置......
所以正整数对构成的集合是可数集。
3,有理数
类似正整数对构成的集合,也是可数集。
4,实数区间(0,1)
不是可数集,可以用反证法,假设把区间内所有实数排好了,利用对角线可以构造一个不在这个排列中但是在区间中的数。
5,实数
实数区间(0,1)和实数集可以构成一一对应,所以实数集也是不可数集。
三,译码、编码
(11)