CCF-CSP-2018-3-4 棋局评估

题目:

时间限制:1.0s
内存限制:256.0MB
问题描述:
问题描述
  Alice和Bob正在玩井字棋游戏。
  井字棋游戏的规则很简单:两人轮流往3*3的棋盘中放棋子,Alice放的是“X”,Bob放的是“O”,Alice执先。当同一种棋子占据一行、一列或一条对角线的三个格子时,游戏结束,该种棋子的持有者获胜。当棋盘被填满的时候,游戏结束,双方平手。
  Alice设计了一种对棋局评分的方法:
  - 对于Alice已经获胜的局面,评估得分为(棋盘上的空格子数+1);
  - 对于Bob已经获胜的局面,评估得分为 -(棋盘上的空格子数+1);
  - 对于平局的局面,评估得分为0;


  例如上图中的局面,Alice已经获胜,同时棋盘上有2个空格,所以局面得分为2+1=3。
  由于Alice并不喜欢计算,所以他请教擅长编程的你,如果两人都以最优策略行棋,那么当前局面的最终得分会是多少?
输入格式
  输入的第一行包含一个正整数T,表示数据的组数。
  每组数据输入有3行,每行有3个整数,用空格分隔,分别表示棋盘每个格子的状态。0表示格子为空,1表示格子中为“X”,2表示格子中为“O”。保证不会出现其他状态。
  保证输入的局面合法。(即保证输入的局面可以通过行棋到达,且保证没有双方同时获胜的情况)
  保证输入的局面轮到Alice行棋。
输出格式
  对于每组数据,输出一行一个整数,表示当前局面的得分。
样例输入
3
1 2 1
2 1 2
0 0 0
2 1 1
0 2 1
0 0 2
0 0 0
0 0 0
0 0 0
样例输出
3
-4
0
样例说明
  第一组数据:
  Alice将棋子放在左下角(或右下角)后,可以到达问题描述中的局面,得分为3。
  3为Alice行棋后能到达的局面中得分的最大值。
  第二组数据:


  Bob已经获胜(如图),此局面得分为-(3+1)=-4。
  第三组数据:
  井字棋中若双方都采用最优策略,游戏平局,最终得分为0。
数据规模和约定
  对于所有评测用例,1 ≤ T ≤ 5。

代码:

#include<iostream>
#include<string.h>
using namespace std;

int a[9],ans[3][3][3][3][3][3][3][3][3];

int isend()
{
	for (int i = 0; i < 3; i++)if (a[i] == a[i + 3] && a[i] == a[i + 6] && a[i])return a[i];
	for (int i = 0; i < 9; i += 3)if (a[i] == a[i + 1] && a[i] == a[i + 2] && a[i])return a[i];
	if (a[0] == a[4] && a[4] == a[8] && a[4])return a[4];
	if (a[2] == a[4] && a[4] == a[6] && a[4])return a[4];
	return 0;
}

int dp()
{
	if (ans[a[0]][a[1]][a[2]][a[3]][a[4]][a[5]][a[6]][a[7]][a[8]]< 100)
		return ans[a[0]][a[1]][a[2]][a[3]][a[4]][a[5]][a[6]][a[7]][a[8]];
	int s = 0;
	for (int i = 0; i < 9; i++)if (a[i])s++;
	if (isend() == 1)return 10 - s;
	if (isend() == 2)return s - 10;
	if (s == 9)return 0;
	int r;
	if (s % 2)
	{
		r = 100;
		for (int i = 0; i < 9; i++)
		{
			if (a[i])continue;
			a[i] = 2;
			if (r > dp())r = dp();
			a[i] = 0;
		}
	}
	else
	{
		r = -100;
		for (int i = 0; i < 9; i++)
		{
			if (a[i])continue;
			a[i] = 1;
			if (r < dp())r = dp();
			a[i] = 0;
		}
	}
	ans[a[0]][a[1]][a[2]][a[3]][a[4]][a[5]][a[6]][a[7]][a[8]] = r;
	return r;
}

int main()
{
	int n;
	cin >> n;
	for (int i = 0; i < n; i++)
	{
		memset(ans, 1, sizeof(ans));
		for (int i = 0; i < 9; i++)cin >> a[i];
		cout << dp() << endl;
	}
	return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/nameofcsdn/article/details/79945582
个人分类: CCF
上一篇CCF-CSP-2018-3-2 碰撞的小球
下一篇CCF-CSP-2018-3-3 URL映射
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭