反向传播详解

这是一场以误差(Error)为主导的反向传播(Back Propagation)运动,旨在得到最优的全局参数矩阵,进而将多层神经网络应用到分类或者回归任务中去

一、为什么引入反向传播

神经网络的过程就是正向传播得到Loss值,再把Loss值反向传播,并对神经网络的参数进行更新,其中反向传播正是神经网络的要点所在
即前向传递输入信号直至输出产生误差,反向传播误差信息更新权重矩阵。
至于为什么会提出反向传播算法,我直接应用梯度下降(Gradient Descent)不行吗?想必大家肯定有过这样的疑问。答案肯定是不行的,纵然梯度下降神通广大,但却不是万能的。梯度下降可以应对带有明确求导函数的情况,或者说可以应对那些可以求出误差的情况,比如逻辑回归(Logistic Regression),我们可以把它看做没有隐层的网络;

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
神经网络的计算过程涉及到两个重要步骤,即前向传播和反向传播。 前向传播是指将输入数据通过神经网络的各层,一直到输出层的过程。在每一层中,输入数据会被加权、激活函数处理,并传递到下一层。具体来说,每个神经元会将输入数据与其对应的权重相乘,并将乘积累加起来,然后再通过激活函数处理后输出给下一层的神经元。这个过程可以用下面的公式表示: $$ a^{[l]} = g^{[l]}(z^{[l]}) = g^{[l]}(W^{[l]}a^{[l-1]} + b^{[l]}) $$ 其中,$a^{[l]}$ 表示第 $l$ 层神经元的输出,$z^{[l]}$ 表示第 $l$ 层神经元的加权和,$g^{[l]}(\cdot)$ 表示第 $l$ 层神经元的激活函数,$W^{[l]}$ 表示第 $l$ 层神经元的权重矩阵,$a^{[l-1]}$ 表示第 $l-1$ 层神经元的输出,$b^{[l]}$ 表示第 $l$ 层神经元的偏置。 反向传播是指根据网络输出的误差,将误差通过神经网络反向传播更新各层神经元的权重和偏置。反向传播的过程可以分为两个步骤:计算误差和更新参数。 计算误差的过程可以用损失函数来表示,常用的损失函数有均方误差(MSE)和交叉熵(Cross-Entropy)。假设 $y$ 表示真实标签,$\hat{y}$ 表示网络输出的预测值,那么均方误差和交叉熵的公式分别为: $$ MSE = \frac{1}{m}\sum_{i=1}^{m}(y^{(i)} - \hat{y}^{(i)})^2 $$ $$ CE = -\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)})] $$ 其中,$m$ 表示样本数量。 更新参数的过程是通过梯度下降算法实现的。梯度下降算法的核心思想是通过求解损失函数的梯度,来更新网络中所有的权重和偏置,使得损失函数的值不断减小。梯度下降算法的公式如下: $$ \theta = \theta - \alpha \frac{\partial J}{\partial \theta} $$ 其中,$\theta$ 表示网络中的权重和偏置,$\alpha$ 表示学习率,$J$ 表示损失函数。通过计算损失函数对权重和偏置的偏导数,就可以得到梯度信息,然后根据梯度信息来更新网络中的参数。 综上所述,神经网络的前向传播和反向传播是神经网络计算的核心过程,通过这两个步骤,神经网络可以将输入数据映射为输出标签,并不断优化网络的参数,提高预测的准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南淮北安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值