-
基础
TensorFlow 基础
TensorFlow 模型建立与训练
基础示例:多层感知机(MLP)
卷积神经网络(CNN)
循环神经网络(RNN)
深度强化学习(DRL)
Keras Pipeline
自定义层、损失函数和评估指标
常用模块 tf.train.Checkpoint :变量的保存与恢复
常用模块 TensorBoard:训练过程可视化
常用模块 tf.data :数据集的构建与预处理
常用模块 TFRecord :TensorFlow 数据集存储格式
常用模块 tf.function :图执行模式
常用模块 tf.TensorArray :TensorFlow 动态数组
常用模块 tf.config:GPU 的使用与分配 -
大规模训练与加速
TensorFlow 分布式训练
使用 TPU 训练 TensorFlow 模型 -
附录
强化学习基础简介
虽然默认的即时执行模式(Eager Execution)为我们带来了灵活及易调试的特性,但在特定的场合,例如追求高性能或部署模型时,我们依然希望使用 TensorFlow 1.X 中默认的图执行模式(Graph Execution),将模型转换为高效的 TensorFlow 图模型。此时,TensorFlow 2 为我们提供了 tf.function 模块,结合 AutoGraph 机制,使得我们仅需加入一个简单的 @tf.function 修饰符,就能轻松将模型以图执行模式运行。
tf.function 基础使用方法
在 TensorFlow 2 中,推荐使用 tf.function (而非 1.X 中的 tf.Session )实现图执行模式,从而将模型转换为易于部署且高性能的 TensorFlow 图模型。只需要将我们希望以图执行模式运行的代码封装在一个函数内,并在函数前加上 @tf.function 即可,如下例所示。关于图执行模式的深入探讨可参考 附录 。
并不是任何函数都可以被
@tf.function修饰!@tf.function使用静态编译将函数内的代码转换成计算图,因此对函数内可使用的语句有一定限制(仅支持 Python 语言的一个子集),且需要函数内的操作本身能够被构建为计算图。建议在函数内只使用 TensorFlow 的原生操作,不要使用过于复杂的 Python 语句,函数参数只包括 TensorFlow 张量或 NumPy 数组,并最好是能够按照计算图的思想去构建函数(换言之,@tf.function只是给了你一种更方便的写计算图的方法,而不是一颗能给任何函数加速的 银色子弹 )。
import tensorflow as tf
import time
from zh.model.mnist.cnn import CNN
from zh.model.utils import MNISTLoader
num_batches = 1000
batch_size = 50
learning_rate = 0.001
data_loader = MNISTLoader()
model = CNN()
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
@tf.function
def train_one_step(X, y):
with tf.GradientTape() as tape:
y_pred = model(X)
loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)
loss = tf.reduce_mean(loss)
# 注意这里使用了TensorFlow内置的tf.print()。@tf.function不支持Python内置的print方法
tf.print("loss", loss)
grads = tape.gradient(loss, model.variables)
optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))
start

本文详细介绍了 TensorFlow 中的 `tf.function` 模块,用于将模型转换为图执行模式,提高性能和便于部署。内容涵盖 `tf.function` 的基础使用方法、内在机制、AutoGraph 的工作原理以及如何在图执行模式下使用 `tf.Session`。通过示例展示了 `tf.function` 如何优化代码执行效率,并解释了其在处理 Python 控制流和数据结构时的特性和注意事项。
最低0.47元/天 解锁文章

380

被折叠的 条评论
为什么被折叠?



