【项目实训1】手把手教你使用 Dehazeformer 模型去雾:服务器租用、环境配置、自定义数据集、模型的训练与测试(全网最全的操作指导) 本文详细记录了如何借助 Tabby 图形界面工具在 AutoDL 远程服务器上配置 Dehazeformer 所需的项目环境,并且成功运行 Dehazeformer 模型进行训练和测试,进而实现对自定义数据集的去雾处理。
【基于 PyTorch 的 Python 深度学习】8 注意力机制(5):PyTorch 实现(下) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了如何使用 PyTorch 实现 Transformer 。
【基于 PyTorch 的 Python 深度学习】8 注意力机制(4):PyTorch 实现(上) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了如何使用 PyTorch 实现 Transformer 。
【基于 PyTorch 的 Python 深度学习】8 注意力机制(3):Transformer(下) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了 vision Transformer 和 Swin Transformer 。
【基于 PyTorch 的 Python 深度学习】8 注意力机制(2):Transformer(上) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了 Transformer 的主要功能、总体架构、相关组件等。
【基于 PyTorch 的 Python 深度学习】8 注意力机制(1) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了注意力机制的基本概念,以及带注意力机制的编码器-解码器架构。
【基于 PyTorch 的 Python 深度学习】9 目标检测与语义分割(3) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了若干种典型的目标检测算法,并简单提及了语义分割的基本概念。
【基于 PyTorch 的 Python 深度学习】9 目标检测与语义分割(2) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了优化候选框的几种方法。
【基于 PyTorch 的 Python 深度学习】9 目标检测与语义分割(1) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了目标检测的相关概念及主要挑战。
【基于 PyTorch 的 Python 深度学习】6 视觉处理基础:卷积神经网络(3) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要通过实例介绍了如何使用 PyTorch 利用卷积神经网络实现 CIFAR10 多分类,如何使用模型集成方法提升性能,以及如何使用现代经典模型提升性能。
【基于 PyTorch 的 Python 深度学习】6 视觉处理基础:卷积神经网络(2) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了卷积神经网络的池化层部分和部分现代经典网络。
【基于 PyTorch 的 Python 深度学习】6 视觉处理基础:卷积神经网络(1) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了卷积神经网络的卷积层部分。
【基于 PyTorch 的 Python 深度学习】5 机器学习基础(3) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了单 GPU 加速和多 GPU 加速,以及使用 GPU 的注意事项。
【基于 PyTorch 的 Python 深度学习】5 机器学习基础(2) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了如何选择合适的激活函数、损失函数和优化器。
【基于 PyTorch 的 Python 深度学习】5 机器学习基础(1) 根据吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》撰写的学习笔记,该篇主要介绍了机器学习的基本任务、机器学习的一般流程,以及针对过拟合问题的解决方法,包括权重正则化、dropout 正则化、批量归一化、层归一化、权重初始化等。