头歌答案-分布式文件系统HDFS

目录

第1关:HDFS的基本操作

第2关:HDFS-JAVA接口之读取文件 

第3关:HDFS-JAVA接口之上传文件

第4关:HDFS-JAVA接口之删除文件 


第1关:HDFS的基本操作

# 1. 启动Hadoop
start-all.sh   # 启动Hadoop集群
# 或使用以下两个命令分别启动
start-dfs.sh
start-yarn.sh

# 2. 在HDFS创建目录
hadoop fs -mkdir -p /usr/output/

# 3. 创建本地文件hello.txt并添加内容
echo "HDFS的块比磁盘的块大,其目的是为了最小化寻址开销。" > hello.txt

# 4. 将hello.txt上传至HDFS指定目录
hadoop fs -put hello.txt /usr/output/

# 5. 删除HDFS的指定目录
hadoop fs -rm -r /user/hadoop

# 6. 将HDFS的文件复制到本地目录
hadoop fs -get /usr/output/hello.txt /usr/local/

第2关:HDFS-JAVA接口之读取文件 

package step2;

import java.io.IOException;
import java.io.InputStream;
import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;

public class FileSystemCat {
    
    public static void main(String[] args) throws IOException {
        //请在Begin-End之间添加你的代码,完成任务要求。
        //请按照左侧的编程要求进行编写代码
        //文件地址为 "hdfs://localhost:9000/user/hadoop/task.txt"
        /********* Begin *********/
        
        String uri = "hdfs://localhost:9000/user/hadoop/task.txt";
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(URI.create(uri), conf);
        
        InputStream in = null;
        try {
            in = fs.open(new Path(uri));
            IOUtils.copyBytes(in, System.out, 4096, false);
        } finally {
            IOUtils.closeStream(in);
        }
        
        /********* End *********/
    }
}

第3关:HDFS-JAVA接口之上传文件

# 启动Hadoop
start-all.sh

# 创建目录(如果不存在)
mkdir -p /develop/input/

# 创建文件并写入内容
cat > /develop/input/hello.txt << 'EOF'
迢迢牵牛星,皎皎河汉女。
纤纤擢素手,札札弄机杼。
终日不成章,泣涕零如雨。
河汉清且浅,相去复几许?
盈盈一水间,脉脉不得语。
《迢迢牵牛星》
EOF

# 确保文件写入成功
cat /develop/input/hello.txt

# 创建HDFS目标目录(如果不存在)
hadoop fs -mkdir -p /user/tmp/
package step3;

import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.net.URI;
import java.io.File;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.util.Progressable;

public class FileSystemUpload {
   
   public static void main(String[] args) throws IOException {
       /********* Begin *********/
       String localSrc = "/develop/input/hello.txt";
       String dst = "hdfs://localhost:9000/user/tmp/hello.txt";
       
       Configuration conf = new Configuration();
       FileSystem fs = FileSystem.get(URI.create(dst), conf);
       
       // 获取文件大小
       File localFile = new File(localSrc);
       final long fileSize = localFile.length();
       
       InputStream in = null;
       FSDataOutputStream out = null;
       
       try {
           in = new BufferedInputStream(new FileInputStream(localFile));
           
           // 显示初始进度
           System.out.println("总进度0%");
           
           out = fs.create(new Path(dst), new Progressable() {
               public void progress() {
                   // 这里什么都不做,仅用于创建输出流
               }
           });
           
           // 复制文件内容
           IOUtils.copyBytes(in, out, 4096, false);
           
           // 完成后显示100%进度
           System.out.println("总进度100%");
           
           // 显示文件内容
           InputStream contentIn = fs.open(new Path(dst));
           IOUtils.copyBytes(contentIn, System.out, 4096, true);
           
       } finally {
           IOUtils.closeStream(in);
           IOUtils.closeStream(out);
       }
       /********* End *********/
   }
}

第4关:HDFS-JAVA接口之删除文件 

package step4;

import java.io.IOException;
import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileUtil;
import org.apache.hadoop.fs.Path;

public class FileSystemDelete {
   
   public static void main(String[] args) throws IOException {
       /********* Begin *********/
       // 创建Configuration对象
       Configuration conf = new Configuration();
       FileSystem fs = FileSystem.get(URI.create("hdfs://localhost:9000"), conf);
       
       try {
           // 1. 删除/user/hadoop/目录 (使用递归删除因为目录非空)
           Path hadoopPath = new Path("/user/hadoop");
           fs.delete(hadoopPath, true);
           
           // 2. 删除/tmp/test/目录
           Path testPath = new Path("/tmp/test");
           fs.delete(testPath, true);
           
           // 3. 只列出根目录下的文件和文件夹
           FileStatus[] rootStatus = fs.listStatus(new Path("/"));
           for (FileStatus status : rootStatus) {
               System.out.println("hdfs://localhost:9000" + status.getPath().toUri().getPath());
           }
           
       } finally {
           fs.close();
       }
       /********* End *********/
   }
}
### 回答1: 第2要求我们学习如何使用hdfs-java接口来读取文件。 Hadoop分布式文件系统HDFS)是Hadoop的核心组件之一,它提供了一种可靠的、高容错性的分布式文件系统,可以存储大量的数据。而hdfs-java接口则是Hadoop提供的Java API,可以用来操作HDFS。 在这一中,我们需要学习如何使用hdfs-java接口来读取HDFS中的文件。具体来说,我们需要掌握如何创建一个HDFS文件系统对象、如何打开一个HDFS文件、如何读取文件内容等操作。 通过学习这些内容,我们可以更好地理解Hadoop分布式文件系统的工作原理,也可以更加灵活地使用Hadoop来处理大数据。 ### 回答2: HDFS(Hadoop 分布式文件系统)是开源框架 Apache Hadoop 中的主要组件之一。它设计用来运行在大规模的硬件集群上,可提供容错性,高可用性和高吞吐量的数据访问。 在 HDFS 中,每个文件都分散存储在多个机器上,这些机器成为数据节点(DataNode),其中一个 Namenode 协调这些数据节点并决定文件存储的位置。HDFS 采用副本机制保障数据的可靠性,每个文件默认有三个副本。因此,在文件读取时,可以从任何一个副本节点中读取文件内容,这样可以提供数据读取的高可用性和冗余性。 HDFS 提供了 Java API 以实现读取和写入文件,这个接口称为 Hadoop HDFS Java API。这个 API 提供一系列类和接口供我们使用。例如,FileSystem、Path 和 FSDataInputStream 类可以用来打开和读取 HDFS 中的文件。其中 FileSystem 是用于访问 HDFS 中文件系统的核心类,它提供了诸如 create()、delete()、mkdir() 等操作访问文件系统。Path 类表示文件在 HDFS 中的路径,FSDataInputStream 则用于读取 HDFS 中的文件。 hdfs-read-file 示例代码: ```java import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.*; import java.io.*; public class HdfsReadFile{ public static void main(String[] args) throws Exception{ String uri = "hdfs://localhost:9000/test/file.txt"; Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(URI.create(uri), conf); Path path = new Path(uri); FSDataInputStream in = fs.open(path); BufferedReader d = new BufferedReader(new InputStreamReader(in)); String line; while ((line = d.readLine()) != null) { System.out.println(line); } d.close(); fs.close(); } } ``` 这个程序从 HDFS 读取指定文件并输出文件的内容。其中,FileSystem.get() 方法获取以用户身份访问 HDFS 的 FileSystem 实例,Path 类维护了文件路径信息,而 FSDataInputStream 类提供了读取文件的方法。 总之,Hadoop HDFS Java API 为我们提供了开发 Hadoop 应用程序的高级接口,使得我们能够轻松地访问 HDFS,实现各种操作,例如读取、写入和删除文件等。本卡介绍了 HDFS 文件读取,通过实现这个简单的程序,我们了解到 HDFS Java 接口的小部分。 ### 回答3: HDFS(Hadoop分布式文件系统)是Hadoop中非常重要的一个组件,它能够将海量的数据以高容错性,高吞吐量的方式存储在多个节点上,实现了对大数据的高效处理。在Java应用中,读取HDFS数据需要使用Hadoop提供的Java API来进行操作。 在读取HDFS文件之前,需要先建立连接到Hadoop集群的配置信息。建立连接的代码如下: ```java Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(new URI("hdfs://localhost:9000"), conf, "hadoop"); ``` 在这里,`conf`是一个`Configuration`对象,表示Hadoop集群的一些配置信息;`FileSystem`是Hadoop提供的管理文件系统的类,其中的`URI`参数是HDFS所在集群的网络地址,`conf`表示连接HDFS所需的配置信息,最后的`hadoop`是连接HDFS的用户名。这一段代码实现了与HDFS的连接。 接下来,就可以用`FSDataInputStream`类来读取HDFS上的文件,如下所示: ```java Path filePath = new Path("/path/to/file"); FSDataInputStream inStream = fs.open(filePath); ``` 这里,`Path`是Hadoop提供的一个表示HDFS文件路径的类,其中的参数是需要读取的文件在HDFS上的路径;`FSDataInputStream`是Hadoop提供的一个用于读取数据的数据流对象,`inStream`就是用于读取文件的一个数据流实例对象。 读取文件之后,就可以把它转换成需要的数据格式。比如,可以用`BufferedReader`读取字符文件,如下所示: ```java BufferedReader reader = new BufferedReader(new InputStreamReader(inStream)); String line; while ((line = reader.readLine()) != null) { // 处理每一行数据 } ``` 在这里,`BufferedReader`是Java提供的字符输入流缓存类,`InputStreamReader`是把字节输入流转换成字符输入流的类。使用`BufferedReader`可以一行一行地读取文件内容并进行处理。 除了字符文件之外,还可以读取二进制文件。比如,可以使用`ByteArrayOutputStream`将数据读取到字节数组中,如下所示: ```java ByteArrayOutputStream outputStream = new ByteArrayOutputStream(); byte[] buffer = new byte[1024]; int len = 0; while ((len = inStream.read(buffer)) != -1) { outputStream.write(buffer, 0, len); } byte[] data = outputStream.toByteArray(); ``` 在这里,`ByteArrayOutputStream`是Java提供的一个内存字节缓存区,使用`read`方法读取字节流,并将读取的字节数据写入缓存区中。最终使用`toByteArray`方法将缓存区中的数据转换成字节数组。 总之,使用Java API读取HDFS数据能够方便地实现对Hadoop集群中的大量数据的处理,给大数据领域的开发和运维带来了极大的便捷性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值