树的定义:
专业定义:
1. 有且只有一个称为根的节点
2. 有若干个互不相交的子树,这些子树本身也是一棵树。
通俗的定义:
1. 树是由节点和边组成
2. 每个节点只有一个父节点但可以有多个子节点
3. 但有一个节点例外,该节点没有父节点,此节点称为根节点。
关键词
节点 父节点(parent) 子节点(child) 子孙 兄弟(sibling)
堂兄弟:其双亲在同一层的节点。
节点的度(degree):节点拥有的子树数。
深度(depth):从根节点到最底层节点的层数称之为深度。
叶子节点(leaf):没有子节点的节点。
非终端节点:实际就是非叶子节点。
树的分类
一般树
任意一个节点的子节点的个数都不受限制
二叉树
任意一个节点的子节点个数最多两个,且子节点的位置不可更改
分类:
一般二叉树
满二叉树
在不增加树的层数的前提下,无法再多添加一个节点的二叉树就是满二叉树
完全二叉树
如果只删除了满二叉树最底层最右边的连续若干个节点,这样形成的二叉树就是完全二叉树。
森林
n个互不相交的树的集合
树的存储
二叉树的存储
连续存储[完全二叉树]
优点:
查找某个节点的父节点和子节点(也包括判断有没有子节点)速度很快
缺点:
耗用内存空间过大
链式存储
一般树的存储
双亲表示法
求父节点方便
孩子表示法
求子节点方便
双亲孩子表示法
求父节点和子节点都很方便
二叉树表示法
把一个普通树转化成二叉树来存储
具体转换方法:
设法保证任意一个节点的
左指针域指向它的第一个孩子
右指针域指向它的兄弟
只要能满足此条件,就可以把一个普通树转化为二叉树
一个普通树转化成的二叉树一定没有右子树
森林的存储
先把森林转化为二叉树,再存储二叉树
操作
遍历 (递归)
先序遍历 【先访问根节点】
先访问根节点
再先序访问左子树
再先序访问右子树
中序遍历 【中间访问根节点】
中序遍历左子树
再访问根节点
再中序遍历右子树
后序遍历【最后访问根节点】
先中序遍历左子树
再中序遍历右子树
再访问根节点
已知两种遍历序列求原始二叉树
通过先序和中序或者 中序和后序我们可以还原出原始二叉树
但是通过先序和后序是无法还原出原始的二叉树的
换种说法:
只有通过先序和中序,或通过中序和后序我们才可以唯一的确定一个二叉树
原文:http://blog.sina.com.cn/s/blog_548e9bfe0100wut6.html