树的基本定义

树的定义:

   专业定义:

           1. 有且只有一个称为根的节点

           2. 有若干个互不相交的子树,这些子树本身也是一棵树。

   通俗的定义:

           1. 树是由节点和边组成

           2. 每个节点只有一个父节点但可以有多个子节点

           3. 但有一个节点例外,该节点没有父节点,此节点称为根节点。

 

   关键词

           节点   父节点(parent)   子节点(child)   子孙   兄弟(sibling)

           堂兄弟:其双亲在同一层的节点。 

           节点的度(degree):节点拥有的子树数。

           深度(depth):从根节点到最底层节点的层数称之为深度。

           叶子节点(leaf):没有子节点的节点。

           非终端节点:实际就是非叶子节点。

 

树的分类

          一般树

               任意一个节点的子节点的个数都不受限制

          二叉树

               任意一个节点的子节点个数最多两个,且子节点的位置不可更改

               

               分类:

                   一般二叉树

                   满二叉树

                        在不增加树的层数的前提下,无法再多添加一个节点的二叉树就是满二叉树

                   完全二叉树

                        如果只删除了满二叉树最底层最右边的连续若干个节点,这样形成的二叉树就是完全二叉树。

          森林

               n个互不相交的树的集合

 

树的存储

          二叉树的存储

                连续存储[完全二叉树]

                    优点:

                          查找某个节点的父节点和子节点(也包括判断有没有子节点)速度很快

                    缺点:

                          耗用内存空间过大

                链式存储

          一般树的存储

                双亲表示法

                       求父节点方便

                孩子表示法

                       求子节点方便

                双亲孩子表示法

                       求父节点和子节点都很方便

                二叉树表示法

                       把一个普通树转化成二叉树来存储

                       具体转换方法:

                             设法保证任意一个节点的

                                      左指针域指向它的第一个孩子

                                      右指针域指向它的兄弟

                             只要能满足此条件,就可以把一个普通树转化为二叉树

                       一个普通树转化成的二叉树一定没有右子树

          森林的存储

                先把森林转化为二叉树,再存储二叉树

 

      操作

          遍历 (递归)

              先序遍历 【先访问根节点】

                  先访问根节点

                  再先序访问左子树

                  再先序访问右子树

              中序遍历 【中间访问根节点】

                  中序遍历左子树

                  再访问根节点

                  再中序遍历右子树

              后序遍历【最后访问根节点】

                  先中序遍历左子树

                  再中序遍历右子树

                  再访问根节点

          已知两种遍历序列求原始二叉树

              通过先序和中序或者 中序和后序我们可以还原出原始二叉树

              但是通过先序和后序是无法还原出原始的二叉树的

              换种说法:

                   只有通过先序和中序,或通过中序和后序我们才可以唯一的确定一个二叉树

 

原文:http://blog.sina.com.cn/s/blog_548e9bfe0100wut6.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值