基于RK3576开发板的NPU使用分享!6T是真的强!

  • 开发板:ArmSoM-W3,ArmSoM-Sige7,ArmSoM-Sige5,ArmSoM-AIM7

  • OS:Debian11/12

  • 目的:本文介绍如何使用rk的npu sdk。

作为瑞芯微8nm高性能AIOT平台,RK3576/RK3588 NPU性能可谓十分强大,6TOPS设计能够实现高效的神经网络推理计算。这使得RK3576/RK3588在图像识别、语音识别、自然语言处理等人工智能领域有着极高的性能表现。

此外,RK3576/RK3588 的NPU还支持多种学习框架,包括TensorFlow,Pytorch、Caffe、MXNet等在人工智能开发中流行的深度学习框架,能够为开发者提供丰富的工具和库,使他们能够方便地进行模型训练和推理,可轻松应对各种大数据运算场景。

rk3576开发板 npu

RK3576/RK3588 NPU典型应用

计算机视觉(Computer Vision):NPU可用于图像识别、目标检测、人脸识别等任务。在安防监控、自动驾驶、医疗影像分析等领域中有着广泛的应用。

自然语言处理(Natural Language Processing,NLP):NPU可加速文本分类、情感分析、机器翻译等任务,使得处理大规模文本数据变得更高效。

语音识别与处理(Speech Recognition and Processing):在语音识别、语音合成等方面,NPU可以提高处理速度和准确性,应用于智能语音助手、语音交互系统等场景。

智能家居与物联网(IoT):NPU的低功耗特性使其适用于智能家居设备、智能监控摄像头、智能穿戴设备等物联网应用,从而实现设备的智能化和自动化。

医疗健康:在医学影像分析、疾病诊断、基因组学等领域,NPU可以加速大规模数据的处理和分析,帮助医疗工作者更准确地诊断疾病和制定治疗方案。

智能交通:在智能交通系统中,NPU可用于车辆识别、交通流量监控、智能交通信号灯控制等任务,提升交通系统的效率和安全性。

Rockchip NPU SDK

rockchip的npu sdk分为两个部分,PC端使用的是rknn-toolkit2,可以在PC端进行模型转换,推理以及性能评估。具体来说是把主流的模型如Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等转换为RKNN模型,并可以在PC端使用这个RKNN模型进行推理仿真,计算时间和内存开销。板端还有一部分,就是rknn runtime环境,包含一组C API库以及与NPU进行通信的驱动模块,可执行程序等。

RKNN软件栈可以帮助用户快速将AI模型部署到瑞芯微芯片上。整体框架如下:

rknn-llm

为了使用 RKNPU,用户需要首先在计算机上运行 RKNN-Toolkit2 工具,将训练好的模型转换为 RKNN 格式的模型,然后使用 RKNN C API 或 Python API 在开发板上进行推理。

  • RKNN-Toolkit2是一款软件开发套件,供用户在PC和瑞芯微NPU平台上进行模型转换、推理和性能评估。

  • RKNN-Toolkit-Lite2为瑞芯微NPU平台提供Python编程接口,帮助用户部署RKNN模型,加速AI应用落地。

  • RKNN Runtime为Rockchip NPU平台提供C/C++编程接口,帮助用户部署RKNN模型,加速AI应用的落地。

  • RKNPU内核驱动负责与NPU硬件交互。它已经开源,可以在Rockchip内核代码中找到。

提示

RKNPU2 SDK v2.0.0-beta (for RK3576/RK3562/RK3566/RK3568/RK3588/RV1103/RV1106) GitHub - airockchip/rknn-toolkit2

Model zoo: GitHub - airockchip/rknn_model_zoo

docs: rknn-toolkit2/doc at master · airockchip/rknn-toolkit2 · GitHub

RK3576/RK3588 NPU使用案例分享

导出rknn模型步骤

请参考 https://github.com/airockchip/rknn_model_zoo/tree/main/models/CV/object_detection/yolo

注意事项

  1. 使用rknn-toolkit2版本大于等于1.4.0。
  2. 切换成自己训练的模型时,请注意对齐anchor等后处理参数,否则会导致后处理解析出错。
  3. 官网和rk预训练模型都是检测80类的目标,如果自己训练的模型,需要更改include/postprocess.h中的OBJ_CLASS_NUM以及NMS_THRESH,BOX_THRESH后处理参数。
  4. demo需要librga.so的支持,编译使用请参考 GitHub - airockchip/librga
  5. 由于硬件限制,该demo的模型默认把 yolov5 模型的后处理部分,移至cpu实现。本demo附带的模型均使用relu为激活函数,相比silu激活函数精度略微下降,性能大幅上升。

Android Demo

编译

首先导入ANDROID_NDK_PATH,例如export ANDROID_NDK_PATH=~/opts/ndk/android-ndk-r18b,然后执行如下命令:

./build-android.sh -t <target> -a <arch> [-b <build_type>]

# 例如: 
./build-android.sh -t rk3568 -a arm64-v8a -b Release

推送执行文件到板子

连接板子的usb口到PC,将整个demo目录到 /data:

adb root
adb remount
adb push install/rknn_yolov5_demo /data/
运行
adb shell
cd /data/rknn_yolov5_demo/

export LD_LIBRARY_PATH=./lib
./rknn_yolov5_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn model/bus.jpg

Aarch64 Linux Demo

编译

首先导入GCC_COMPILER,例如export GCC_COMPILER=~/opt/gcc-linaro-7.5.0-2019.12-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu ,然后执行如下命令:

./build-linux.sh -t <target> -a <arch> -b <build_type>]

# 例如: 
./build-linux.sh -t rk3588 -a aarch64 -b Release
推送执行文件到板子

将 install/rknn_yolov5_demo_Linux 拷贝到板子的/userdata/目录.

  • 如果使用rockchip的EVB板子,可以使用adb将文件推到板子上:
adb push install/rknn_yolov5_demo_Linux /userdata/
  • 如果使用其他板子,可以使用scp等方式将install/rknn_yolov5_demo_Linux拷贝到板子的/userdata/目录
运行
adb shell
cd /userdata/rknn_yolov5_demo_Linux/

export LD_LIBRARY_PATH=./lib
./rknn_yolov5_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn model/bus.jpg

Note: Try searching the location of librga.so and add it to LD_LIBRARY_PATH if the librga.so is not found on the lib folder. Using the following commands to add to LD_LIBRARY_PATH.

export LD_LIBRARY_PATH=./lib:<LOCATION_LIBRGA.SO>

视频流Demo运行命令参考如下:

  • h264视频
./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn xxx.h264 264

注意需要使用h264码流视频,可以使用如下命令转换得到:

ffmpeg -i xxx.mp4 -vcodec h264 xxx.h264
  • h265视频
./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn xxx.hevc 265

注意需要使用h265码流视频,可以使用如下命令转换得到:

ffmpeg -i xxx.mp4 -vcodec hevc xxx.hevc
  • rtsp视频流
./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn <RTSP_URL> 265

rknn-video

注意
  • 需要根据系统的rga驱动选择正确的librga库,具体依赖请参考: GitHub - airockchip/librga
  • rk3562 目前仅支持h264视频流
  • rtsp 视频流Demo仅在Linux系统上支持,Android上目前还不支持
  • 视频流输入的h264名称不能为"out.h264",会被覆盖

演示视频

RK3576开发板(ArmSoM-Sige5) 6T NPU使用案例分享_哔哩哔哩_bilibili

### 回答1: RK3399开发板是一款功能大的开发板,适用于高级用户。下面是使用手册的详细说明: 首先,RK3399开发板是一款基于Rockchip公司自主设计的开发板,搭载了RK3399芯片,支持六核心架构,包括两个Cortex-A72高性能核心和四个Cortex-A53低功耗核心,主频高达1.8GHz,同时还配备了Mali-T860MP4的高性能图像处理单元,可以满足高性能计算和图像处理的需求。 为了方便高级用户使用,RK3399开发板提供了丰富的接口和扩展能力。包括USB 3.0接口、USB 2.0接口、HDMI接口、DisplayPort接口、以太网接口、SD卡槽以及GPIO等接口,用户可以通过这些接口来连接外设设备、外部存储、显示器等,实现更多功能的扩展和应用。 在软件方面,RK3399开发板支持多种操作系统,包括Android、Linux等,并提供了相关的SDK和工具链,方便用户进行开发和调试。用户可以使用C、C++、Java等编程语言进行开发,还可以利用硬件编码解码的能力来实现音视频播放、图像处理等功能。 对于高级用户而言,RK3399开发板提供了丰富的技术支持和资源,用户可以参考开发板的原理图、芯片手册等文档,深入了解RK3399芯片的工作原理和特性,以便更好地进行二次开发和优化。 总之,作为高级用户,使用RK3399开发板可以充分发挥其大的性能和扩展能力,实现更丰富的功能和应用。同时,得益于丰富的技术支持和资源,高级用户可以充分发挥创造力和想象力,开发出更具实用性和创新性的应用。 ### 回答2: RK3399开发板是一款大的嵌入式处理器,拥有广泛的应用领域。以下是对RK3399开发板高级用户使用手册的回答。 RK3399开发板高级用户使用手册包含详细的硬件和软件配置信息,以及一些高级功能的使用说明。首先,该手册提供了对开发板硬件组件的详细介绍,包括处理器、内存、存储、显示接口、传感器和外部接口等。 其次,手册介绍了RK3399开发板的软件配置信息。用户可以找到如何安装和配置操作系统的详细步骤,包括Linux和Android。手册还提供了一些常用工具和驱动程序的安装方法,以及一些高级功能的设置,如网络连接、声音设置和外设的使用。 除此之外,手册还包含了一些开发板的高级功能的使用说明。比如,RK3399开发板支持GPU加速,用户可以了解如何配置和使用GPU进行图形加速。此外,手册还介绍了如何进行开发板的调试和测试,以及如何进行固件的升级。 最后,手册还提供了一些实用的开发工具和示例代码的使用指南。用户可以了解如何使用开发环境进行应用程序的开发和调试,以及如何使用编程接口和库函数来编写应用程序。 总之,RK3399开发板高级用户使用手册是一份详细的参考文档,能够帮助用户更好地了解和使用开发板硬件和软件功能,并且提供了一些高级功能的设置和开发指南。 ### 回答3: RK3399开发板是一款高性能的ARM开发板,适用于高级用户进行项目开发和定制。以下是其使用手册的详细内容: 1. 硬件介绍:说明RK3399开发板硬件架构、接口布局和主要功能,包括处理器、内存、存储等信息,以便用户全面了解开发板硬件配置。 2. 系统安装:介绍如何从零开始搭建RK3399开发板的开发环境,包括系统的烧录和启动,操作系统的安装和配置。 3. 开发环境:详细介绍如何配置开发环境,包括交叉编译工具链的安装和配置,SDK的下载和配置,以及常用开发工具的使用。 4. 应用开发:提供基于RK3399开发板的应用开发指南,包括编写和调试应用程序,使用硬件接口进行输入输出控制,以及使用外部设备进行测试和调试。 5. 驱动开发:介绍如何开发和调试驱动程序,包括设备驱动程序的编写,设备树的配置,以及相关驱动程序的加载和测试。 6. 系统调优:提供系统性能调优的指南,包括如何进行内存管理、调度优化、电源管理和硬件加速等方面的优化,以提高系统的性能和稳定性。 7. 故障排除:列举一些常见的故障和解决方法,包括系统启动故障、应用程序崩溃、硬件接口失效等问题的排查和解决方案。 总之,RK3399开发板高级用户使用手册提供了全面的指南和教程,帮助用户更好地理解和使用开发板,实现自己的项目开发和定制需求。无论是应用开发还是驱动开发,用户都能够通过该手册获得良好的指导和支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ArmSoM开源硬件

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值