end to end recovery of human shape and pose源代码的实现加理论解读

本片blog主要介绍hmr源代码的实现,理论的解读在下一片中进行解读:大家有什么疑问,欢迎在下面留言交流呀!!!
(1)从github上下载源代码:https://github.com/akanazawa/hmr
这个源代码的实现有好几种不同的实现版本:tensorflow、pytorch等等,这里介绍tensorflow的版本
(2)下载完源代码后,首先查看工程的具体架构,如果你需要训练的话建议深入阅读里面的文档,以及各个需要的数据集,个人认为直接使用训练好的模型,人家也是花了一个星期去训练这个模型的,如果感兴趣的话建议训练一下,但是你训练的结果不一定有现在的结果好!!!
(3)源代码的依赖安装和实现:
个人建议步骤:(1)安装anaconda—使用conda 建立虚拟环境
conda create -n hmr python=2.7 建立一个名为hmr的虚拟环境
(2)在虚拟环境中安装各种依赖:激活虚拟环境–source activate hmr
(3)安装tensorflow:建议安装非gpu版本的,适合初学者
pip install tensorflow=1.3.0
(4)找到工程中的requirement.txt文件夹,这个文件夹中记录的是所有的依赖安装,执行:pip install -r requirement.txt
(5)在执行上面的命令通常会出现关于opendr的安装问题,给出解决方案:我的上一片blog: https://blog.csdn.net/nbxuwentao/article/details/100177159 找到opendr安装出错解决思路就可以解决,补充最后一个支持python2.7的opencv版本为以及安装命令:pip install opencv-python==4.2.0.32
(6)安装完上面的依赖之后就可以玩模型了,在上面的虚拟环境中执行:cd 源代码的路径;
(7)执行:python -m demo --img_path data/coco1.png
python -m demo --img_path data/im1954.jpg
(8)出来结果:在源代码中需要注意的地方就是,训练好的模型路径问题,一定要在源代码中体现出来,有什么疑问留言交流

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页