python +Anaconda+ conda + cuda + pyToach

博客介绍了Python、Anaconda、CUDA和PyTorch的安装与使用。包括Python Anaconda环境的官方及镜像下载地址,CUDA的下载、安装及环境变量查看,Anaconda的检查,在Anaconda中新建环境并安装PyTorch 1.13,还提及在PyCharm中尝试用PyTorch调用CUDA。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1 基本版本

python 3.9 

Anaconda3

cuda 11.6

conda 23.3.1

pyToach1.13

2.1 Python  Anaconda 的环境的安装

官方下载地址

当前版本 https://www.anaconda.com/download/历史版本 https://repo.anaconda.com/archive/

镜像下载地址

清华镜像 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

Anaconda与Python版本对应关系

 Anaconda 可以用默认安装,右图两个选择框都勾上

2.2 CUDA下载与安装

在NVIDIA控制面板查看显卡驱动版本,选择合适的CUDA版本进行下载。 CUDA下载地址(清华镜像源):CUDA Toolkit 11.6 Downloads | NVIDIA Developer

下载完成后,点击exe执行文件,此处我选择了原始地址(这就是个临时的,安装完以后系统就给你删了,不用太管他)

开始安装

进入这个窗口后,选择自定义

接下来这一步可以全选(但是我全选以后安装失败了,我失败后的解决措施是:不勾选CUDA中的Nsight VSE和Visual Studio Integration)

这一步是选择安装位置:

1、如果你想装c盘你就直接下一步,不想装C盘的看2、

2、在对应盘中建立对应的文件

(1)D:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.6

(2)D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6

3、之前是c盘的你就选d盘对应的就行

安装完成

然后就是 NVIDIA要登陆账号啥的,我之前没有账号我就开了一个,应该没啥影响吧,不想登陆的应该是可以不登陆。

后面一直向下,然后就是查看一下环境变量了。点击设置–>搜索高级系统设置–>查看环境变量


上面的环境变量是自己生成的,无需手动配置。之后在cmd下查看是否可以使用命令:注意是大写V哦

输入:nvcc -V

set cuda

 

2.3 Anaconda

之前装好的,我只进行了检查

输入:conda --version

python


可以看的正确的版本号以及python已托管至Anaconda。可以在电脑屏幕左下角的Windows徽标键这里,选择点击绿色圈圈Anaconda Navifator将其打开。

2.4 在Anaconda中安装pyToacn1.13

1、先新建一个环境,我随便起名为pyToach1113

2)命令行添加环境,进入cmd下,输入

conda env list 这句话就是显示所有环境名
activate pyToach1113 启动 pyToach1113这个环境

2.1) 使用官方推荐命令安装pyToach,进入网站pyToach官网,选择这个标签页:

拉到下面,使用这个命令,注意是11.6

conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia


2.2) 等待漫长的命令执行完成,验证是否可以正常使用:

可以正常使用

2.5 在pycharm中尝试使用pyToach调用cuda

然后就基本上项目完成,然后尝试输入一些代码进行尝试:

以下是一些例子:

import numpy as np

# 1\创建一个长度为10的空向量
empty_vector = np.empty(10)
print("空向量:", empty_vector)

# 2\创建3*3且值从0到8的矩阵
matrix = np.arange(9).reshape(3,3)
print( "3x3矩阵:\n", matrix)

# 3\找到数组中非0的位置索引
matrix = np.array([[0, 1, 0],
                   [2, 0, 3],
                   [0, 4, 0]])

nonzero_indices = np.nonzero(matrix)
print("非零元素的位置索引: ", nonzero_indices)

# 4\编写一个函数,能够实现对一个N阶的二维数组进行如下计算:
# 函数的形参为一个N阶二阶数组,返回两个值,依次为该数组的主对角线元素之和、副对角线元素之和。
import numpy as np
matrix = np.array([[6, 1, 10],
                   [2, 4, 3],
                   [0, 4, 0]])


def calculate_diagonal_sums(array):
    n = len(array)
    main_diagonal_sum = np.trace(array)
    flipped_array = np.fliplr(array)
    anti_diagonal_sum = np.trace(flipped_array)
    return main_diagonal_sum, anti_diagonal_sum


print(calculate_diagonal_sums(matrix))


 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值